Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

1 алкены. Физические свойства алкенов, применение, способы получения

Самыми простыми органическими соединениями являются предельные и непредельные углеводороды. К ним относят вещества класса алканов, алкинов, алкенов.

Формулы их включают атомы водорода и углерода в определенной последовательности и количестве. Они часто встречаются в природе.

Определение алкенов

Другое их название - олефины или углеводороды этиленовые. Именно так назвали данный класс соединений в 18 столетии при открытии маслянистой жидкости − хлористого этилена.

К алкенам относятся вещества, состоящие из водородных и углеродных элементов. Они относятся к ациклическим углеводородам. В их молекуле присутствует единственная двойная (ненасыщенная) связь, соединяющая два углеродных атома между собой.

Формулы алкенов

Каждый класс соединений имеет свое химическое обозначение. В них символами элементов периодической системы указывается состав и структура связи каждого вещества.

Общая формула алкенов обозначается следующим образом: C n H 2n , где число n больше или равняется 2. При ее расшифровке видно, что на каждый атом углерода приходится по два атома водорода.

Молекулярные формулы алкенов из гомологического ряда представлены следующими структурами: C 2 H 4 , C 3 H 6 , C 4 H 8 , C 5 H 10 , C 6 H 12 , C 7 H 14 , C 8 H 16 , C 9 H 18 , C 10 H 20 . Видно, что каждый последующий углеводород содержит на один больше углерода и на 2 больше водорода.

Существует графическое обозначение расположения и порядка химических соединений между атомами в молекуле, которое показывает формула алкенов структурная.С помощью валентных черточек обозначается связь углеродов с водородами.

Формула алкенов структурная может быть изображена в развернутом виде, когда показываются все химические элементы и связи. При более кратком выражении олефинов не показывается соединение углерода и водорода с помощью валентных черточек.

Формулой скелетной обозначают самую простую структуру. Ломаной линией изображают основу молекулы, в которой атомы углерода представлены ее верхушками и концами, а звеньями указывают водород.

Как образуются наименования олефинов

CH 3 -HC=CH 2 + H 2 O → CH 3 -OHCH-CH 3 .

При воздействии на алкены кислотой серной происходит процесс сульфирования:

CH 3 -HC=CH 2 + HO−OSO−OH → CH 3 -CH 3 CH-O−SO 2 −OH.

Реакция протекает с образованием кислых эфиров, например, изопропилсерной кислоты.

Алкены подвержены окислению во время их сжигания при действии кислорода с формированием воды и газа углекислого:

2CH 3 -HC=CH 2 + 9O 2 → 6CO 2 + 6H 2 O.

Взаимодействие олефиновых соединений и разбавленного калия перманганата в форме раствора приводит к возникновению гликолей или спиртов двухатомного строения. Данная реакция также является окислительной с образованием этиленгликоля и обесцвечиванием раствора:

3H 2 C=CH 2 + 4H 2 O+ 2KMnO 4 → 3OHCH-CHOH+ 2MnO 2 +2KOH.

Молекулы алкенов могут быть задействованы в процессе полимеризации со свободнорадикальным или катионно-анионным механизмом. В первом случае под влиянием пероксидов получается полимер типа полиэтилена.

По второму механизму катионными катализаторами выступают кислоты, а анионными являются вещества металлорганические с выделением стереоселективного полимера.

Что такое алканы

Их еще называют парафинами или предельными ациклическими углеводородами. Они обладают линейной или разветвлённой структурой, в которой содержатся только насыщенные простые связи. Все представители данного класса имеют общую формулу C n H 2n+2 .

В их составе присутствуют только атомы углерода и водорода. Общая формула алкенов образуется из обозначения предельных углеводородов.

Названия алканов и их характеристика

Самым простым представителем данного класса является метан. За ним следуют вещества типа этана, пропана и бутана. В основе их названия лежит корень числительного на греческом языке, к которому прибавляют суффикс -ан. Наименования алканов занесены в IUPAC номенклатуру.

Общая формула алкенов, алкинов, алканов включает только две разновидности атомов. К ним относятся элементы углерода и водорода. Количество углеродных атомов во всех трех классах совпадает, отличие наблюдается только в численности водорода, который может отщепляться или присоединяться. Из получают ненасыщенные соединения. У представителей парафинов в молекуле содержится на 2 атома водорода больше, чем у олефинов, что подтверждает общая формула алканов, алкенов. Алкенов структура считается ненасыщенной за счет наличия двойной связи.

Если соотнести число во-до-ро-дных и уг-ле-ро-дных ато-мов в ал-ка-нах, то значение будет мак-си-маль-ным в сравнении с другими классами уг-ле-во-до-ро-дов.

Начиная с метана и заканчивая бутаном (от С 1 до С 4), вещества существуют в газообразном виде.

В жидкой форме представлены углеводороды гомологического промежутка от С 5 до С 16 . Начиная с алкана, имеющего в основной цепи 17 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету и оптические видоизменения молекулы.

В парафинах углеродные ва-лент-но-сти считаются полностью за-ня-тыми соседними уг-ле-ро-да-ми или во-до-ро-да-ми с образованием связи σ-типа. С хи-ми-че-ской точки зрения это обуславливает их слабые свой-ства, именно поэтому алканы носят название пре-дель-ны-х или на-сы-щен-ны-х уг-ле-во-до-ро-дов, лишенных сродства.

Они вступают в реакции замещения, связанные с галогенированием по радикальному типу, сульфохлорированием или нитрованием молекулы.

Парафины подвергаются процессу окисления, горения или разложения при высоких температурах. Под действием ускорителей реакций происходит отщепление атомов водорода или дегидрирование алканов.

Что такое алкины

Их еще называют ацетиленовыми углеводородами, у которых в цепочке углеродной присутствует тройная связь. Структура алкинов описывается общей формулой C n H 2 n-2 . Из нее видно, что в отличие от алканов, у ацетиленовых углеводородов недостает четыре атома водорода. Их заменяет тройная связь, образованная двумя π- соединениями.

Такое строение обуславливает химические свойства данного класса. Структурная формула алкенов и алкинов наглядно показывает ненасыщенность их молекул, а также наличие двойной (H 2 C꞊CH 2) и тройной (HC≡CH) связи.

Наименование алкинов и их характеристика

Самым простым представителем является ацетилен или HC≡CH. Его также именуют этином. Происходит оно от названия насыщенного углеводорода, в котором убирают суффикс -ан и добавляют -ин. В наименованиях длинных алкинов цифрой указывают расположение тройной связи.

Зная строение углеводородов насыщенных и ненасыщенных, можно определить, под какой буквой обозначена общая формула алкинов: а) CnH2n; в) CnH2n+2; c) CnH2n-2; г) CnH2n-6. Правильным ответом будет третий вариант.

Начиная с ацетилена и заканчивая бутаном (от С 2 до С 4), вещества имеют газообразную природу.

В жидкой форме находятся углеводороды гомологического промежутка от С 5 до С 17 . Начиная с алкина, имеющего в основной цепи 18 атомов углерода, происходит переход физического состояния в твердую форму.

Для них характерна изомерия по углеродному скелету, по положению связи тройной, а также межклассовые видоизменения молекулы.

По химическим характеристикам ацетиленовые углеводороды подобны алкенам.

Если у алкинов тройная связь концевая, то они выполняют функцию кислоты с образованием солей алкинидов, например, NaC≡CNa. Наличие двух π-связей делает молекулу ацетиледина натрия сильным нуклеофилом, вступающим в реакции замещения.

Ацетилен подвергается хлорированию в присутствии хлорида меди с получением дихлорацетилена, конденсации под действием галогеналкинов с выделением диацетиленовых молекул.

Алкины участвуют в реакциях принцип которых лежит в основе галогенирования, гидрогалогенирования, гидротации и карбонилирования. Однако такие процессы протекают слабее, чем у алкенов с двойной связью.

Для ацетиленовых углеводородов возможны реакции присоединения по нуклеофильному типу молекулы спирта, первичного амина или сероводорода.

Алкены - класс органических соединений, имеющий двойную связь между атомами углерода, структурная формула - C n H 2n . Двойная связь в молекулах олефинов - это одна σ- и одна π-связь. Таким образом, если мы представим два атома углерода и разместим их на плоскости, σ-связь будет расположена на плоскости, а π-связь будет распологаться выше и ниже плоскости (если Вы плохо представляете себе, о чём идёт речь, обратитесь к разделу химические связи).

Гибридизация

В алкенах имеет место sp 2 -гибридизация, для которой угол H-C-H составляет 120 градусов, а длина связи C=C равна 0,134 нм.

Строение

Из наличия π-связи следует, и подтверждается экспериментально, что:

  • По своему строению, двойная связь в молекулах алкенов более восприимчива к внешнему воздействию, нежели обычная σ-связь
  • Двойная связь делает невозможным вращение вокруг σ-связи, откуда следует наличие изомеров, данные изомеры называются цис- и транс-
  • π-связь менее прочна, чем σ-связь, поскольку электроны находятся дальше от центров атомов

Физические свойства

Физические свойства алкенов схожи с физическими свойствами алканов. Алкены, имеющие до пяти атомов углерода, находятся в газообразном состоянии при нормальных условиях. Молекулы с содержанием от шести до 16 атомов углерода находятся в жидком состоянии и от 17 атомов углерода - алкены находятся в твёрдом состоянии при нормальных условиях.

Температура кипения алкенов в среднем увеличивается на 30 градусов на каждую CH 2 -группу, как и у алканов, ответвления снижают температуру кипения вещества.

Наличие π-связи делает олефины слаборастворимыми в воде, что обуславливает их небольшую полярность. Алкены - неполярные вещества и растворяются в неполярных растворителях и слабо полярных растворителях.

Плотность алкенов выше, чем у алканов, но ниже чем у воды

Изомерия

  • Изомерия углеродного скелета: 1-бутен и 2-метилпропен
  • Изомерия положения двойной связи: 1-бутен и 2-бутен
  • Межклассовая изомерия: 1-бутен и циклобутан

Реакции

Характерные реакции алкенов - реакции присоединения, π-связь разрывается и образовавшиеся электроны охотно принимают новый элемент. Наличие π-связи означает большее количество энергии, поэтому, как правило, реакции присоединения носят экзотермический характер, т.е. протекают с выделением тепла.

Реакции присоединения

Присоединение галогенводородов

Галогенводороды легко присоединяются к двойной связи алкенов, формируя галогеналкил ы. Галогенводороды смешивают с уксусной кислотой, либо напрямую, в газообразном состоянии, смешивают с алкеном. Для рассмотрения механизма реакции, необходимо знать правило Марковникова.

Правило Марковникова

При взаимодествии гомологов этилена с кислотами, водород присоединяется к более гидрогенизированному атому углерода.
Исключение из правила, гидроборирование алкинов , будет рассмотрено в статье об алкинах.

Механизм реакции присоединения галогенводородов к алкенам следующий: происходит гомолитический разрыв связи в молекуле галогенводорода, образовывается протон и анион галогена. Протон присоединяется к алкену образуя карбкатион, такая реакция является эндотермической и имеет высокий уровень энергии активации, поэтому реакция происходит медленно. Образованный карбкатион очень реактивен, поэтому легко связывается с галогеном, энергия активации низкая, поэтому этот этап не тормозит реакцию.

При комнатной температуре алкены реагируют с хлором и бромом в присутствии тетрахлорметана. Механизм реакции присоединения галогенов выглядит следующим образом: электроны с π-связи воздействуют на молекулу галогена X 2 . По мере приближения галогена к олефину, электроны в молекуле галогена смещаются к более отдалённому атому, таким образом молекула галогена поляризуется, ближайший атом имеет положительный заряд, более удалённый - отрицательный. Происходит гетеролитический разрыв связи в молекуле галогена, образуется катион и анион. Катион галогена присоединяется к двум атомам углерода посредством электронной пары π-связи и свободной электронной пары катиона. Оставшийся анион галогена воздействует на один из атомов углерода в молекуле галогеналкена разрывая цикл C-C-X и образовывая дигалогеналкен.

Реакции присоединения алкенов находят два основных применения, первое - количественный анализ, определение количества двойных связей количеством поглощенных молекул X 2 . Второе - в промышленности. Производство пластика основано на винилхлориде. Трихлорэтилен и тетрахлорэтилен - отличные растворители ацетиленовых жиров и резин.

Гидрирование

Присоединение газообразного водорода к алкену происходит с катализаторами Pt, Pd или Ni. В результате реакции образуются алканы. Основное применение реакции каталитического присоединения водорода - это, во-первых, количественный анализ. По остатку молекул H 2 можно определить количество двойных связей в веществе. Во-вторых, растительные жиры и жиры рыб являются непредельными углеродами и такое гидрирование приводит к увеличению температуры плавления, преобразуя в твёрдые жиры. На данном процессе основано производство маргарина.

Гидратация

При смешивании алкенов с серной кислотой образуются алкил-гидросульфаты. При разбавлении алкил-гидросульфатов водой и сопутствующем нагревании, образуется спирт. Пример реакции - смешивание этена (этилен) с серной кислотой, последующее смешивание с водой и нагревание, результат - этанол.

Окисление

Алкены легко окисляются различными веществами, такими как, например, KMnO 4 , O 3 , OsO 4 и т.д. Существует два вида окисления алкенов: разрыв π-связи без разрыва σ-связи и разрыв σ- и π-связи. Окисление без разрыва сигма-связи называется мягким окислением, с разрывом сигма-связи - жёстким окислением.

Окисление этена без разрыва σ-связи образует эпоксиды (эпоксиды - это циклические соединения C-C-O) или двухатомные спирты. Окисление с разрывом σ-связи образует ацетоны, альдегиды и карбоновые кислоты.

Окисление перманганатом калия

Реакции окисления алкенов под воздействием перманганата калия называются были открыты Егором Вагнером и носит его имя. В реакции Вагнера, окисление происходит в органическом растворителе (ацетон или этанол) при температуре 0-10°C, в слабом растворе перманганата калия. В результате реакции образуются двуатомные спирты и обесцвечивается перманганат калия.

Полимеризация

Большинство простых алкенов могут испытывать реакции самоприсоединения, формируя таким образом большие молекулы из структурных единиц. Такие большие молекулы называются полимерами, реакция, которая позволяет получить полимер называется полимеризацией. Простые структурные единицы, образующие полимеры, называются мономерами. Полимер обозначается заключением повторяющейся группы в скобках с указанием индекса "n", что означает большое количество повторений, например: "-(CH 2 -CH 2) n -" - полиэтилен. Процессы полимеризации - основа производства пластика и волокон.

Радикальная полимеризация

Радикальная полимеризация инициируется при помощи катализатора - кислорода или пероксида. Реакция состоит из трёх этапов:

Инициация
ROOR → 2RO .
CH 2 = CH-C 6 H 5 → RO- CH 2 C . H-C 6 H 5
Рост цепи
RO- CH 2 C . H-C 6 H 5 + CH 2 =CH-C 6 H 5 → RO-CH 2 -CH(C 6 H 5)-CH 2 -C . -C 5 H 6
Обрыв цепи рекомбинацией
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH 2 -CH-C 6 H 5 -CH 2 -CH-C 6 H 5
Обрыв цепи диспропорционированием
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH=CH-C 6 H 5 + CH 2 -CH 2 -C 6 H 5

Ионная полимеризация

Другой способ полимеризации алкенов - это ионная полимеризация. Реакция протекает с образованием промежуточных продуктов - карбкатионов и карбанионов. Образование первого карбкатиона, как правило, осуществляется при помощи кислоты Льюиса, образование карбаниона происходит, соответственно, при реакции с основанием Льюиса.

A + CH 2 =CH-X → A-CH 2 -C + H-X → ... → A-CH 2 -CHX-CH 2 -CHX-CH 2 C + HX ...
B + CH 2 =CH-X → B-CH 2 -C - H-X → ... → B-CH 2 -CHX-CH 2 -CHX-CH 2 C - HX ...

Распространённые полимеры

Наиболее распространёнными полимерами являются:

Номенклатура

Название алкенов, аналогично алканам, состоит из первой части - префикса, обозначающего количество атомов углерода в главной цепи, и суффикса -ен. Алкен - соединение с двойной связью, поэтому молекулы алкена начинаются с двух атомов углерода. Первый в списке - этен, эт- - два атома углерода, -ен - наличие двойной связи.

Если в молекуле более трёх атомов углерода, то необходимо указывать позицию двойной связи, например, бутен может быть двух видов:

CH 2 =CH—CH 2 —CH 3
CH 3 —CH=CH—CH 3

Для обозначения позиции двойной связи, необходимо добавить цифру, для примера выше это будут 1-бутен и 2-бутен соответственно (также применяются названия 1-бутен и 2-бутен, но они не являются систематическими).

Наличие двойной связи влечёт за собой изомерию, когда молекулы могут находится по разные стороны от двойной связи, например:

Данная изомерия именуется цис- (Z-zusammen, с немецкого вместе) и транс- (E-entgegen, с немецкого напротив), в первом случае цис-1,2-дихлорэтен (или (Z)-1,2-дихлорэтен), во втором - транс-1,2-дихлорэтен (или (E)-1,2-дихлорэтен).

Общая формула алкенов: C n H 2n (n 2)

Первые представители гомологического ряда алкенов:

Формулы алкенов можно составить из соответствующих формул алканов (предельных углеводородов). Названия алкенов образуют заменой суффикса -ан соответствующего алкана на -ен или –илен: бутан – бутилен, пентан –пентен и т.д. Номер атома углерода с двойной связью обозначается арабской цифрой после названия.

Атомы углерода, участвующие в образовании двойной связи находятся в состоянии sp-гибридизации. Три -связи, образованные гибридными орбиталям и, расположены в одной плоскости под углом 120° друг к другу. Дополнительная -связь образуется путем бокового перекрывания негибридных р-орбиталей:


Длина двойной связи С=С (0,133нм) меньше длины одинарной связи (0,154 нм). Энергия двойной связи меньше удвоенного значения энергии одинарной связи, поскольку энергия -связи меньше энергии -связи.

Изомеры алкенов

Все алкены кроме этилена имеют изомеры. Для алкенов характерна изомерия углеродного скелета, изомерия положения двойной связи, межклассовая и пространственная изомерии.

Межклассовым изомером пропена (C 3 H 6) является циклопропан. Начиная с бутена (C 4 H 8) появляется изомерия по положению двойной связи (бутен-1 и бутен-2), изомерия углеродного скелета (метилпропен или изобутилен), а также пространственная изомерия (цис-бутен-2 и транс-бутен-2). В цис- изомерах заместители расположены по одну сторону, а в транс- изомерах – по разные стороны от двойной связи.

Химические свойства и химическая активность алкенов определяются наличием в их молекулах двойной связи. Для алкенов наиболее характерны реакции электрофильного присоединения: гидрогалогенирование, гидратация, галогенирование, гидрирование, полимеризация.

Качественная реакция на двойную связь – обесцвечивание бромной воды:

Примеры решения задач по теме «формула алкенов»

ПРИМЕР 1

Задание Сколько изомеров, способных обесцвечивать бромную воду имеет вещество состава С 3 Н 5 Сl? Напишите структурные формулы этих изомеров
Решение С 3 Н 5 Сl представляет собой монохлорпроизводное от углеводорода С 3 Н 6 . Этой формуле отвечает либо пропен – углеводород с одной двойной связью, либо циклопропан (циклический углеводород). Данное вещество обесцвечивает бромную воду, значит, в его составе есть двойная связь. Три атома углерода могут образовать только такую структуру:

поскольку изомерия углеродного скелета и положения двойной связи при таком количестве атомов углерода невозможна.

Структурная изомерия в данной молекуле возможна только за счет изменения положения атома хлора относительно двойной связи:

Для 1-хлорпропена возможна цис-транс-изомерия:

Ответ Условию задачи удовлетворяют 4 изомера

ПРИМЕР 2

Задание Смесь изомерных углеводородов (газов с плотностью по водороду равной 21) объемом 11,2 л (н.у.) вступила в реакцию с бромной водой. В результате было получено 40,4 г соответствующего дибромпроизводного. Какое строение имеют эти углеводороды? Определите их объемное содержание в смеси (в %).
Решение Общая формула углеводородов C х H у.

Рассчитаем молярную массу углеводородов:

Следовательно, формула углеводородов – С 3 Н 6 . Такую формулу имеют только два вещества – пропен и циклопропан.

С бромной водой реагирует только пропен:

Рассчитаем количество вещества дибромпроизводного:

По уравнению реакции:

n(пропена) моль

Суммарное количество углеводородов в смеси равно:

Простейшим алкеном является этен C 2 H 4 .По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.



Пространственная структура этилена


По названию первого представителя этого ряда - этилена - такие углеводороды называют этиленовыми.

Номенклатура и изомерия

Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.


По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:



Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:



Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:


Н 2 С = СН - - винил (этенил)


Н 2 С = CН - СН 2 - -аллил (пропенил-2)

Изомерия

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.


Первые два члена гомологического ряда алкенов -(этилен и пропилен) - изомеров не имеют и их строение можно выразить так:


H 2 C = CH 2 этилен (этен)


H 2 C = CH - CH 3 пропилен (пропен)

Изомерия положения кратной связи

H 2 C = CH - CH 2 - CH 3 бутен-1


H 3 C - CH = CH - CH 3 бутен-2

Геометрическая изомерия - цис-, транс- изомерия.

Такая изомерия характерна для соединений с двойной связью.


Если простая σ -связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс- ) изомеров.


Геометрическая изомерия - один из видов пространственной изомерии.


Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами,а по разную - транс-изомерами:



Цис- и транс- изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс- изомеры более устойчивы, чем цис- изомеры.

Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.


В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr 2 О 3).

Дегидрирование алканов

H 3 C - CH 2 - CH 2 - CH 3 → H 2 C = CH - CH 2 - CH 3 + H 2 (бутен-1)


H 3 C - CH 2 - CH 2 - CH 3 → H 3 C - CH = CH - CH 3 + H 2 (бутен-2)


Из лабораторных способов получения можно отметить следующие:


1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:



2. Гидрирование ацетилена в присутствии катализатора (Pd):


H-C ≡ C-H + H 2 → H 2 C = CH 2


3. Дегидратация спиртов (отщепление воды).
В качестве катализатора используют кислоты (серную или фосфорную) или Аl 2 O 3:



В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):


Физические свойства

Физические свойства некоторых алкенов показаны в таблице ниже. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) - газы, начиная с C 5 H 10 (амилен, или пентен-1) - жидкости, а с С 18 Н 36 - твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис -изомеров выше, чем транс -изомеров, а температуры плавления - наоборот.


Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо - в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Физические свойства некоторых алкенов

Название

t пл,°С

t кип,°С

Этилен (этен)

Пропилен (пропен)

Бутилен (бутен-1)

Цис-бутен-2

Транс-бутен-2

Изобутилен (2-метилпропен)

Амилен (пентен-1)

Гексилен (гексен-1)

Гептилен (гептен-1)

Октилен (октен-1)

Нонилен (нонен-1)

Децилен (децен-1)


Алкены малополярны, но легко поляризуются.

Химические свойства

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью.


π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:



Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением σ-связи).


Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.


1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды - алканы:


Н 2 С = СН 2 + H 2 Н 3 С - СН 3 (этан)


2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:


Н 2 С = СН 2 + Cl 2 → ClH 2 C - CH 2 Cl (1,2-дихлорэтан)


Легче идет присоединение хлора и брома, труднее - иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.






Сравните: у алкенов реакция галогенирования - процесс присоединения, а не замещения (как у алканов).


Реакцию галогенирования обычно проводят в растворителе при обычной температуре.


Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов π-связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами π-связи нестабильный интермедиат, называемый π-комплексом или комплексом с переносом заряда. Следует отметить, что в π-комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары π-связи как донора и галогена как акцептора.



Далее π-комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р -орбиталь sp 2 -гибридизованного атома углерода перекрывается с р -орбиталью "неподеленной пары" электронов атома галогена, образуя циклический ион бромония.



На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic -рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение S N 2 у атома углерода, где уходящей группой является Br + .



Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.


Быстрое обесцвечивание раствора брома в СCl 4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.


Присоединение брома к алкенам (реакция бромирования) - качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных - сохраняется).


3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:


H 2 С = СН 2 + НВr → Н 3 С - CH 2 Вr


Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837 - 1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген - к менее гидрогенизированному:



Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием метильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).


Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома - к углероду с частичным положительным зарядом.


Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода.


Поэтому в метильной группе наблюдается некоторая поляризация σ-связей С-Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О 2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.


По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводородов, но и других электрофильных реагентов (H 2 O, H 2 SО 4 , НОСl, ICl и др.).


4. Гидратация (присоединение воды). В присутствии катализаторов к алкенам присоединяется вода с образованием спиртов. Например:


H 3 C - CH = CH 2 + H - OH → H 3 C - CHOH - CH 3 (изопропиловый спирт)

Реакции окисления

Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.


1. Горение


Н 2 С = СН 2 + 3O 2 → 2СO 2 + 2Н 2 O


2. Неполное каталитическое окисление


3. Окисление при обычной температуре. При действии на этилен водного раствора КМnO 4 (при нормальных условиях, в нейтральной или щелочной среде - реакция Вагнера) происходит образование двухатомного спирта - этиленгликоля:


3H 2 C = CH 2 + 2KMnO 4 + 4H 2 O → 3HOCH 2 - CH 2 OH (этиленгликоль)+ 2MnO 2 + KOH


Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.


В более жестких условиях (окисление КМnO 4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:


H 3 C - CH = CH - CH 3 + 2O 2 → 2H 3 C - COOH (уксусная кислота)

Реакция изомеризации

При нагревании или в присутствии катализаторов алкены способны изомеризоваться - происходит перемещение двойной связи или установление изостроения.

Реакции полимеризации

За счет разрыва π-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.



Нахождение в природе и физиологическая роль алкенов

В природе ациклические алкены практически не встречаются. Простейший представитель этого класса органических соединений - этилен C 2 H 4 - является гормоном для растений и в незначительном количестве в них синтезируется.


Один из немногих природных алкенов - мускалур (цис- трикозен-9) является половым аттрактантом самки домашней мухи (Musca domestica) .


Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздражение слизистых оболочек дыхательных путей

Отдельные представители

Этилен (этен) - органическое химическое соединение,описываемое формулой С 2 H 4 . Является простейшим алкеном. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном (низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции).


Этилен - вызывает наркоз, обладает раздражающим и мутагенным действием.


Этилен - самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3% в год.


Этилен является ведущим продуктом основного органического синтеза и применяется для получения полиэтилена (1-е место, до 60 % всего объёма).


Полиэтилен - термопластичный полимер этилена. Самый распространенный в мире пластик.


Представляет собой воскообразную массу белого цвета (тонкие листы прозрачный бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (сцепление поверхностей разнородных твёрдых и/или жидких тел) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.


Пропилен - вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.


Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. Со временем, происходит термостарение.


Полиэтиленовая плёнка (особенно упаковочных, например, пузырчатая упаковка или скотч).



Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады.


Полимерные трубы для канализации, дренажа, водо-, газоснабжения.



Электроизоляционный материал.


Полиэтиленовый порошок используется как термоклей.



Бутен-2 - вызывает наркоз, обладает раздражающим действием.

Алкеновые углеводороды (олефины) являются одним из классов органических веществ, которым присущи свои . Виды изомерии алкенов у представителей данного класса не повторяются с изомерией других органических веществ.

Вконтакте

Характерные признаки класса

Этиленовыми олефинами именуют один из классов непредельных углеводородов, содержащих одну двойную связь.

По физическим свойствам представители данной категории непредельных соединений являются:

  • газами,
  • жидкостями,
  • твердыми соединениями.

В составе молекул присутствует не только «сигма»-связь, но и «пи»-связь. Причиной этому является наличие в структурной формуле гибридизации «sp2 », которой свойственно расположение атомов соединения в одной плоскости.

При этом между ними формируется угол не менее ста двадцати градусов. Негибридизованным орбиталям «р » свойственно расположение как поверх молекулярной плоскости, так и под ней.

Такая особенность строения приводит к формированию дополнительных связей – «пи» или «π ».

Описанная связь менее прочна по сравнению с «сигма»-связями, так как перекрывание боком имеет слабое сцепление. Для суммарного распределения электронных плотностей образующихся связей характерна неоднородность. При вращении возле углерод-углеродной связи происходит нарушение перекрывания «р»-орбиталей. Для каждого алкена (олефина) такая закономерность является отличительным признаком.

Практически всем этиленовым соединениям присущи высокие температуры кипения и плавления, характерные не для всех органических веществ. Представители указанного класса непредельных углеводов быстро растворяются в и других растворителях органического состава.

Внимание! Ациклические непредельные соединения этиленовые углеводороды имеют общую формулу — C n H 2n.

Гомология

Исходя из того, что общая формула алкенов C n H 2n , им присуща определенная гомология. Гомологический ряд алкенов начинает первый представитель этилен или этен. Данное вещество в обычных условиях является газом и содержит два атома углерода и четыре атома водорода – C 2 H 4 . За этеном гомологический ряд алкенов продолжает пропен и бутен. Их формулы следующие: «C 3 H 6 » и «C 4 H 8 ». При обычных условиях они также являются газами, которые тяжелее , а значит, собирать их необходимо пробиркой, перевернутой вниз дном.

Общая формула алкенов позволяет рассчитать следующего представителя данного класса, имеющего не менее пяти атомов углерода в структурной цепи. Это пентен с формулой «C 5 H 10 ».

По физическим характеристикам указанное вещество относится к жидкостям, так же как двенадцать следующих соединений гомологической линии.

Среди алкенов с указанными характеристиками есть и твердые вещества, которые начинаются с формулы C 18 H 36 . Жидким и твердым этиленовым углеводородам не свойственно растворение в воде, но при попадании в органические растворители они вступают с ними в реакцию.

Описанная общая формула алкенов подразумевает замену ранее стоявшего суффикса «ан» на «ен». Это закреплено правилами ИЮПАК. Какого бы представителя данной категории соединений мы не взяли, у них всех есть описанный суффикс.

В названии этиленовых соединений всегда присутствует определенная цифра, которая указывает на местоположение двойной связи в формуле. Примерами этого служит: «бутен-1» или «пентен-2». Атомную нумерацию начинают с того края, к которому ближе находится двойная конфигурация. Это правило является «железным» во всех случаях.

Изомерия

В зависимости от имеющегося вида гибридизации алкенов им присущи некоторые типы изомерии, каждый из которых имеет свои особенности и строение. Рассмотрим основные виды изомерии алкенов.

Структурного типа

Структурная изомерия подразделяется на изомеры по:

  • углеродному скелету;
  • расположению двойной связи.

Структурные изомеры углеродного скелета возникают в случае появления радикалов (ответвлений от главной цепи).

Изомерами алкенов указанной изомерии будут:

CH 2 =CHCH 2 CH 3.

2-метилпропен-1:

CH 2 =CCH 3

У представленных соединений общее количество углеродных и водородных атомов (C 4 H 8), но разное строение углеводородного скелета. Это структурные изомеры, хотя свойства их не одинаковы. Бутену-1 (бутилену) присущ характерный запах и наркотические свойства, раздражающие дыхательные пути. Данными особенностями не обладает 2-метилпропен-1.

В данном случае нет изомеров у этилена (C 2 H 4), так как он состоит только из двух углеродных атомов, куда нельзя подставить радикалы.

Совет! Радикал разрешается ставить к средним и предпоследним углеродным атомам, но не разрешается располагать их около крайних заместителей. Данное правило работает для всех непредельных углеводородов.

Относительно расположения двойной связи различают изомеры:

CH 2 =CHCH 2 CH 2 -CH 3.

CH 3 -СH= CHCH 2 -CH 3.

Общая формула алкенов у представленных примеров: C 5 H 10, , но местоположение одной двойной связи различное. Свойства указанных соединений будут различаться. Это структурная изомерия.

Изомерия

Пространственного типа

Пространственная изомерия алкенов связана с характером расположения углеводородных заместителей.

На основании этого различают изомеры:

  • «Цис»;
  • «Транс».

Общая формула алкенов позволяет создавать «транс-изомеры» и «цис-изомеры» у одного и того же соединения. Возьмем, к примеру, бутилен (бутен). Для него можно создать изомеры пространственного строения, по-разному расположив относительно двойной связи заместителей. С примерами изомерия алкенов будет выглядеть так:

«цис-изомер» «транс-изомер»

Бутен-2 Бутен-2

Из указанного примера видно, что у «цис-изомеров» по одну сторону плоскости расположения двойной связи находятся два одинаковых радикала. Для «транс-изомеров» это правило не работает, так как у них относительно углеродной цепи «С=С» располагаются два не похожих заместителя. Учитывая данную закономерность, можно самим строить «цис» и «транс» изомеры для различных ациклических этиленовых углеводородов.

Представленные «цис-изомер» и «транс-изомер» для бутена-2 невозможно превратить один в другой, так как для этого необходимо вращение вокруг имеющейся углеродной двойной цепочки (С=С). Чтобы осуществить данное вращение необходимо определенное количество энергии, чтобы разорвать существующую «p-связь».

На основании всего вышеизложенного можно сделать вывод, что изомеры «транс» и «цис» вида являются индивидуальными соединениями с определенным набором химических и физических свойств.

Нет изомеров у какого алкена. Пространственных изомеров не имеет этилен из-за одинакового расположения водородных заместителей относительно двойной цепи.

Межклассовые

Межклассовая изомерия у алкеновых углеводородов распространена значительно. Причиной этому служит сходность общей формулы представителей данного класса с формулой циклопарафинов (циклоалканов). У данных категорий веществ в одинаковое количество углеродных и водородных атомов, кратное составу (C n H 2n).

Межклассовые изомеры будут выглядеть так:

CH 2 =CHCH 3.

Циклопропан:

Выходит, что формуле C 3 H 6 отвечают два соединения: пропен-1 и циклопропан. Из структурного строения видно разное расположение углерода относительно друг друга. По свойствам указанные соединения также разные. Пропен-1 (пропилен) – это газообразное соединение с низкой температурой кипения. Для циклопропана характерно газообразное состояние с резким запахом и едким вкусом. Химические свойства данных веществ также различаются, но состав у них идентичен. В органический данный вид изомеров именуют межклассовым.

Алкены. Изомерия алкенов. ЕГЭ. Органическая химия.

Алкены: Строение, номенклатура, изомерия

Вывод

Алкеновая изомерия – это их важная характеристика, благодаря которой в природе появляются новые соединения с другими свойствами, которые находят применение в промышленности и быту.

Лучшие статьи по теме