Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

Периодическая система элементов д и менделеева кратко. Периодическая система химических элементов

В природе существует очень много повторяющихся последовательностей:

  • времена года;
  • время суток;
  • дни недели…

В середине 19 века Д.И.Менделеев заметил, что химические свойства элементов также имеют определенную последовательность (говорят, что эта идея пришла ему во сне). Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. В современной таблице химические элементы выстроены по возрастанию атомного номера элемента (количество протонов в ядре атома).

Атомный номер изображен над символом химического элемента, под символом - его атомная масса (сумма протонов и нейтронов). Обратите внимание, что атомная масса у некоторых элементов является нецелым числом! Помните об изотопах! Атомная масса - это средневзвешенное от всех изотопов элемента, встречающихся в природе в естественных условиях.

Под таблицей расположены лантаноиды и актиноиды.

Металлы, неметаллы, металлоиды


Расположены в Периодической таблице слева от ступенчатой диагональной линии, которая начинается с Бора (В) и заканчивается полонием (Po) (исключение составляют германий (Ge) и сурьма (Sb). Нетрудно заметить, что металлы занимают бОльшую часть Периодической таблицы. Основные свойства металлов: твердые (кроме ртути); блестят; хорошие электро- и теплопроводники; пластичные; ковкие; легко отдают электроны.

Элементы, расположенные справа от ступенчатой диагонали B-Po, называются неметаллами . Свойства неметаллов прямо противоположны свойствам металлов: плохие проводники тепла и электричества; хрупкие; нековкие; непластичные; обычно принимают электроны.

Металлоиды

Между металлами и неметаллами находятся полуметаллы (металлоиды). Для них характерны свойства как металлов, так и неметаллов. Основное применение в промышленности полуметаллы нашли в производстве полупроводников, без которых немыслима ни одна современная микросхема или микропроцессор.

Периоды и группы

Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.

Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s 2 2s 2 2p 6 3s 1 ; Mg отдает два электрона: 1s 2 2s 2 2p 6 3s 2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s 2 2s 2 2p 6 3s 2 3p 5 .

В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.

Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.

Группа IA(1) . Атомы элементов этой группы имеют во внешнем электронном слое всего по одному электрону, поэтому легко отдают один электрон.

Наиболее важные щелочные металлы - натрий (Na) и калий (K), поскольку играют важную роль в процессе жизнедеятельности человека и входят в состав солей.

Электронные конфигурации:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Группа IIA(2) . Атомы элементов этой группы имеют во внешнем электронном слое по два электрона, которые также отдают во время химических реакций. Наиболее важный элемент - кальций (Ca) - основа костей и зубов.

Электронные конфигурации:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Группа VIIA(17) . Атомы элементов этой группы обычно получают по одному электрону, т.к. на внешнем электронном слое находится по пять элементов и до "полного комплекта" как раз не хватает одного электрона.

Наиболее известные элементы этой группы: хлор (Cl) - входит в состав соли и хлорной извести; йод (I) - элемент, играющий важную роль в деятельности щитовидной железы человека.

Электронная конфигурация:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Группа VIII(18). Атомы элементов этой группы имеют полностью "укомплектованный" внешний электронный слой. Поэтому им "не надо" принимать электроны. И отдавать их они "не хотят". Отсюда - элементы этой группы очень "неохотно" вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название "инертный", т.е. "бездействующий"). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.

Электронные конфигурации:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов - по 1 валентному электрону:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

У щелочноземельных металлов - по 2 валентных электрона:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

У галогенов - по 7 валентных электронов:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

У инертных газов - по 8 валентных электронов:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам .

Обратим теперь свое внимание на элементы, расположенные в группах с символов В . Они расположены в центре периодической таблицы и называются переходными металлами .

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали :

  1. Sc - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Отдельно от основной таблицы расположены лантаноиды и актиноиды - это, так называемые, внутренние переходные металлы . В атомах этих элементов электроны заполняют f-орбитали :

  1. Ce - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2

ПЕРИОДИЧЕСКАЯ СИСТЕМА , упорядоченное множество хим. элементов, их естеств. , являющаяся табличным выражением . Прообразом пе-риодич. системы хим. элементов послужила таблица "Опыт системы элементов, основанной на их и химическом сходстве", составленная Д. И. Менделеевым 1 марта 1869 (рис. 1). В послед. годы ученый совершенствовал таблицу, развил представления о периодах и группах элементов и о месте элемента в системе. В 1870 Менделеев назвал систему естественной, а в 1871 периодической. В результате уже тогда периодическая система во многом приобрела совр. структурные очертания. Опираясь на нее, Менделеев предсказал существование и св-ва ок. 10 неизвестных элементов; эти прогнозы впоследствии подтвердились.

Рис. 1 Таблица "Опыт системы элементов, основанной на их и химическом сходстве" (Д. И. Менделеев. I мирта 1869).

Однако на протяжении последующих более 40 лет периодическая система в значит. степени представляла собой лишь эмпирич. обобщение фактов, поскольку отсутствовало физ. объяснение причин периодич. изменения CB-B элементов в зависимости от возрастания их . Такое объяснение было невозможно без обоснованных представлений о строении (см. ). Поэтому важнейшей вехой в развитии периодической системы стала планетарная (ядерная) модель , предложенная Э. Резерфордом (1911). В 1913 А. ван ден Брук пришел к выводу, что элемента в периодической системе численно равен положит. заряду (Z) ядра его . Этот вывод был экспериментально подтвержден Г. Мозли (закон Мозли, 1913-14). В результате периодич. закон получил строгую физ. формулировку, удалось однозначно определить ниж. границу периодической системы (H как элемент с миним. Z=1), оценить точное число элементов между H и U и установить, какие элементы еще не открыты (Z = 43, 61, 72, 75, 85, 87). Теория периодической системы была разработана в нач. 1920-х гг. (см. ниже).

Структура периодическаяой системы. Современная периодическая система включает 109 хим элементов (имеются сведения о синтезе в 1988 элемента с Z=110). Из них в прир. объектах обнаружены 89; все элементы, следующие за U, или (Z = 93 109), а также Tc (Z = 43), Pm (Z = 61) и At (Z = 85) были искусственно синтезированы с помощью разл. . Элементы с Z= 106 109 пока не получили названий, поэтому соответствующие им символы в таблицах отсутствуют; для элемента с Z = 109 еще неизвестны наиб. долгоживущих .

За всю историю периодической системы было опубликовано более 500 разл вариантов ее изображения. Это обусловливалось попытками отыскать рациональное решение нек-рых спорных проблем структуры периодической системы (размещение H, ланта-ноидов и и т.п.). Наиб. распространение получили след. табличные формы выражения периодической системы: 1) короткая предложена Менделеевым (в совр. виде помещена в начале тома на цветном форзаце); 2) длинная разрабатывалась Менделеевым, усовершенствована в 1905 А. Вернером (рис.2); 3) лестничная опубликована в 1921 H. (рис. 3). В последние десятилетия особенно широко используются короткая и длинная формы, как наглядные и практически удобные. Все перечисл. формы имеют определенные достоинства и недостатки. Однако едва ли можно предложить к.-л. универс. вариант изображения периодической системы, к-рый адекватно отразил бы все многообразие св-в хим. элементов и специфику изменения их хим. поведения по мере возрастания Z.

Фундам. принцип построения периодической системы заключается в выделении в ней периодов (горизонтальные ряды) и групп (вертикальные столбцы) элементов. Современная периодическая система состоит из 7 периодов (седьмой, пока не завершенный, должен заканчиваться гипотетич. элементом с Z= 118) и 8 групп Периодом наз. совокупность элементов, начинающаяся (или первый период) и заканчивающаяся . Числа элементов в периодах закономерно возрастают и, начиная со второго, попарно повторяются: 8, 8, 18, 18, 32, 32, ... (особый случай первый период, содержащий всего два элемента). Группа элементов не имеет четкой дефиниции; формально ее номер соответствует макс. значению составляющих ее элементов, но это условие в ряде случаев не выполняется. Каждая группа подразделяется на главную (а)и побочную (б)подгруппы; в каждой из них содержатся элементы, сходные по хим. св-вам, к-рых характеризуются одинаковым строением внеш. электронных оболочек. В большинстве групп элементы подгрупп а и б обнаруживают определенное хим. сходство, преим. в высших .

Особое место в структуре периодической системы занимает группа VIII. На протяжении длит. времени к ней относили только элементы "триад": Fe-Co-Ni и (Ru Rh Pd и Os-Ir-Pt), а все располагали в самостоят. нулевой группе; следовательно, периодическая система содержала 9 групп. После того как в 60-х гг. были получены соед. Xe, Kr и Rn, стали размещать в подгруппе VIIIa, а нулевую группу упразднили. Элементы же триад составили подгруппу VIII6. Такое "структурное оформление" группы VIII фигурирует ныне практически во всех публикуемых вариантах выражения периодической системы.

Отличит. черта первого периода состоит в том, что он содержит всего 2 элемента: H и Не. вследствие св-в - единств. элемент, не имеющий четко определенного места в периодической системе. Символ H помещают либо в подгруппу Ia, либо в подгруппу VIIa, либо в обе одновременно, заключая в одной из подгрупп символ в скобки, или, наконец, изображая его разл. шрифтами. Эти способы расположения H основаны на том, что он имеет нек-рые формальные черты сходства как со , так и с .


Рис. 2. Длинная форма периодич. системы хим. элементов (совр. вариант). Рис. 3. Лестничная форма периодич. системы хим. элементов (H. , 1921).

Второй период (Li-Ne), содержащий 8 элементов, начинается Li (единств, + 1); за ним следует Be ( + 2). Металлич. характер В ( +3) выражен слабо, а следующий за ним С - типичный ( +4). Последующие N, О, F и Ne-неметаллы, причем только у N высшая + 5 отвечает номеру группы; О и F относятся к числу самых активных .

Третий период (Na-Ar) также включает 8 элементов, характер изменения хим. св-в к-рых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg и Al более "металлич-ны", чем соотв. Be и В. Остальные элементы-Si, P, S, Cl и Ar-неметаллы; все они проявляют , равные номеру группы, кроме Ar. T. обр., во втором и третьем периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллич. характера элементов.

Все элементы первых трех периодов относятся к подгруппам а. По совр. терминологии, элементы, принадлежащие к подгруппам Ia и IIa, наз. I-элементами (в цветной таблице их символы даны красным цветом), к подгруппам IIIa-VIIIa-р-элементами (символы оранжевого цвета).

Четвертый период (K-Kr) содержит 18 элементов. После К и щел.-зем. Ca (s-элементы) следует ряд из 10 т. наз. переходных (Sc-Zn), или d-элементов (символы синего цвета), к-рые входят в подгруппы б. Большинство (все они - ) проявляют высшие , равные номеру группы, исключая триаду Fe-Co-Ni, где Fe в определенных условиях имеет +6, а Со и Ni максимально трехвалентны. Элементы от Ga до Kr относятся к подгруппам a (р-элементы), и характер изменения их св-в во многом подобен изменению св-в элементов второго и третьего периодов в соответствующих интервалах значений Z. Для Kr получено неск. относительно устойчивых соед., в осн. с F.


Пятый период (Rb-Xe) построен аналогично четвертому; в нем также имеется вставка из 10 переходных, или d-элементов (Y-Cd). Особенности изменения св-в элементов в периоде: 1) в триаде Ru-Rh-Pd проявляет макс, 4- 8; 2) все элементы подгрупп а, включая Xe, проявляют высшие , равные номеру группы; 3) у I отмечаются слабые металлич. св-ва. T. обр., св-ва элементов четвертого и пятого периодов по мере увеличения Z изменяются сложнее, чем св-ва элементов во втором и третьем периодах, что, в первую очередь, обусловлено наличием переходных d-элементов.

Шестой период (Cs-Rn) содержит 32 элемента. В него помимо десяти d-элементов (La, Hf-Hg) входит семейство из 14 f-элементов (символы черного цвета, от Ce до Lu)-лaнтaнoидoв. Они очень похожи по хим. св-вам (преим. в +3) и поэтому не м. б. размещены по разл. группам системы. В короткой форме периодической системы все ланта-ноиды включены в подгруппу IIIa ( La), а их совокупность расшифрована под таблицей. Этот прием не лишен недостатков, поскольку 14 элементов как бы оказываются вне системы. В длинной и лестничной формах периодической системы специ-фика отражается на общем фоне ее структуры. Др. особенности элементов периода: 1) в триаде Os Ir Pt только Os проявляет макс. +8; 2) At имеет более выраженный по сравнению с I металлич. характер; 3) Rn наиб. реакционноспособен из , однако сильная затрудняет изучение его хим. св-в.

Седьмой период подобно шестому должен содержать 32 элемента, но еще не завершен. Fr и Ra элементы соотв. подгрупп Ia и IIa, Ac аналог элементов подгруппы III6. Согласно актинидной концепции Г. Сиборга (1944), после Ac следует семейство из 14 f-элементов (Z = 90 103). В короткой форме периодической системы последние включаются в Ac и подобно записываются отд. строкой под таблицей. Этот прием предполагал наличие определенного хим. сходства элементов двух f-семейств. Однако детальное изучение показало, что они проявляют гораздо более широкий диапазон , в т. ч. и таких, как +7 (Np, Pu, Am). Кроме того, для тяжелых характерна стабилизация низших (+ 2 или даже +1 для Md).

Оценка хим. природы Ku (Z = 104) и Ns (Z = 105), синтезированных в кол-ве единичных весьма короткоживущих , позволила сделать вывод, что эти элементы аналоги соотв. Hf и Та, т. е. d-элементы, и должны располагаться в подгруппах IV6 и V6. Хим. элементов с Z= 106 109 не проводилась, но можно предполагать, что они относятся к седьмого периода. Расчеты с помощью ЭВМ свидетельствуют о принадлежности элементов с Z = 113 118 к p-элементам (подгруппы IIIa VIIIa).

Теория периодической системы была преим. создана H. (1913 21) на базе предложенной им квантовой модели . Учитывая специфику изменения св-в элементов в периодической системе и сведения об их , разработал схему построения электронных конфигураций по мере возрастания Z, положив ее в основу объяснения явления периодичности и структуры периодической системы. Эта схема опирается на определенную последовательность заполнения оболочек (наз. также слоями, уровнями) и подоболочек (оболочек, подуровней) в в соответствии с увеличением Z. Сходные электронные конфигурации внеш. электронных оболочек в периодически повторяются, что и обусловливает периодич. изменение хим. св-в элементов. В этом состоит гл. причина физ. природы феномена периодичности. Электронные оболочки, за исключением тех, к-рые отвечают значениям 1 и 2 главного квантового чиела л, не заполняются последовательно и монотонно до своего полного завершения (числа в последоват. оболочках составляют: 2, 8, 18, 32, 50,...); построение их периодически прерывается появлением совокупностей (составляющих определенные подоболочки), к-рые отвечают большим значениям п. В этом заключается существ. особенность "электронного" истолкования структуры периодической системы.

Схема формирования электронных конфигураций , лежащая в основе теории периодической системы, отражает, т. обр., определенную последовательность появления в по мере роста Z совокупностей (подоболочек), характеризующихся нек-рыми значениями главного и орбитального (l) квантовых чисел. Данная схема в общем виде записывается в виде табл. (см. ниже).

Вертикальными чертами разделены подоболочки, к-рые заполняются в элементов, составляющих последоват. периоды периодической системы (номера периодов обозначены цифрами сверху); жирным шрифтом выделены подоболочки, завершающие формирование оболочек с данным п.

Числа в оболочках и подоболочках определяются на . Применительно к , как частицам с полуцелым , он постулирует, что в не м. б. двух с одинаковыми значениями всех квантовых чисел. Емкости оболочек и подоболочек равны соотв. 2п 2 и 2(2l + 1). Этот принцип не определяет.

Период

1

2

3

4

5

6

7

Электронная конфигурация

1s

2s 2р

3s 3р

4s 3d 4р

5s 4d 5р

6s 4f 5d 6p

7s 5f 6d 7p

n

l

22

33

434

545

6456

7567

l

0

01

01

021

021

0321

0321

2

26

26

2106

2106

214106

214106

Число элементов в периоде

2

8

8

18

18

32

32

однако, последовательность формирования электронных конфигураций по мере возрастания Z. Из приведенной выше схемы находятся емкости последоват. периодов: 2, 8, 18, 32, 32, ....

Каждый период начинается элементом, в к-рого впервые появляется с данным значением n при l = 0 (ns 1 -элементы), и заканчивается элементом, в к-рого заполнена подоболочка с тем же n и l = 1 (np 6 -элемен-ты); исключение-первый период (только 1s-элементы). Все s- и p- элементы принадлежат к подгруппам а. К подгруппам б относятся элементы, в к-рых достраиваются оболочки, ранее оставшиеся недостроенными (значения h меньше номера периода, l = 2 и 3). В первые три периода входят элементы только подгрупп а, т. е. s- и р-элементы.

Реальная схема построения электронных конфигураций описывается т. наз. (п + l)-правилом, сформулированным (1951) В. M. Клечковским. Построение электронных конфигураций происходит в соответствии с последоват увеличением суммы (п + /). При этом в пределах каждой такой суммы сначала заполняются подоболочки с большими l и меньшими n, затем с меньшими l и большими п.

Начиная с шестого периода построение электронных конфигураций в действительности приобретает более сложный характер, что выражается в нарушении четких границ между последовательно заполняющимися подобо-лочками. Напр., 4f-электрон появляется не в La с Z = 57, а в следующего за ним Ce (Z = 58); последоват. построение 4f-подоболочки прерывается в Gd (Z = 64, наличие 5d-электрона). Подобное "размывание периодичности" отчетливо сказывается в седьмом периоде для с Z > 89, что отражается на св-вах элементов.

Реальная схема первоначально не была выведена из к.-л. строгих теоретич. представлений. Она основывалась на известных хим. св-вах элементов и сведениях об их спектрах. Действит. физ. обоснование реальная схема получила благодаря применению методов к описанию строения . В квантовомех. интерпретации теории строения понятие электронных оболочек и подоболочек при строгом подходе утратило свой исходный смысл; ныне широко используется представление об атомных . Тем не менее разработанный принцип физ. интерпретации явления периодичности не потерял своего значения и в первом приближении достаточно исчерпывающе объясняет теоретич. основы периодической системы. Во всяком случае, в публикуемых формах изображения периодической системы отражается представление о характере распределения по оболочкам и подоболочкам.

Строение и химические свойства элементов. Осн особенности хим. поведения элементов определяются характером конфигураций внешних (одной-двух) электронных оболочек . Эти особенности различны для элементов подгрупп a (s- и p-элементов), подгрупп б (d-элементы), f-семейств ( и ).

Особое место занимают 1s-элементы первого периода (H и Не). вследствие присутствия в только одного отличается большой св-в. Исключительной характеризуется конфигурация Не (1s 2), что обусловливает его хим. инертность. Поскольку у элементов подгрупп а происходит заполнение внеш. электронных оболочек (с n, равным номеру периода), св-ва элементов заметно изменяются по мере возрастания Z в соответствующих периодах, что выражается в ослаблении металлических и усилении неметаллич. св-в. Все , кроме H и Не,-p-элементы. В то же время в каждой подгруппе а по мере увеличения Z наблюдается усиление металлич. св-в. Эти закономерности объясняются ослаблением энергии связи внеш. с ядром при переходе от периода к периоду.

Значение периодической системы. Эта система сыграла и продолжает играть огромную роль в развитии мн. естественнонауч. дисциплин. Она стала важным звеном в атомно-мол. учения, способствовала формулировке совр. понятия "хим. элемент" и уточнению представлений о простых в-вах и соед., оказала значит. влияние на разработку теории строения и возникновение понятия изотопии. С периодической системой связана строго науч. постановка проблемы прогнозирования в , что проявилось как в предсказании существования неизвестных элементов и их св-в, так и новых особенностей хим. поведения уже открытых элементов. Периодическая система - важнейшая основа неорг. ; она служит, напр., задачам синтеза в-в с заранее заданными св-вами, созданию новых материалов, в частности полупроводниковых, подбору специфич. для разл. хим. процессов. Периодическая система -науч. база преподавания общей и неорг. , а также нек-рых разделов атомной физики.

Лит.: Менделеев Д. И., Периодический закон. Основные статьи, M., 1958; Кедров Б. M.. Три аспекта атомистики, ч. 3. Закон Менделеева, M., 1969; Трифонов Д H., О количественной интерпретации периодичности, M., 1971; Трифонов Д. H., Кривомазов A. H., Лисневский Ю. И., Учение о периодичности и учение о . Коммешированная хронология важнейших событий. M., 1974; Карапетьями MX. Дракии С. И., Строение , M., 1978; Учение о периодичности. История и современность. Сб. статей. M.. 1981. Корольков Д. В., Основы , M., 1982; Мельников В. П., Дмитриев И С. Дополнительные виды периодичности в периодической системе Д. И. Менделеева, М. 1988. Д. Н Трифонов.

Периодическая система химических элементов — это классификация химических элементов, основанная на определенных особенностях строения атомов химических элементов. Она была составлена на основе Периодического закона, открытого в 1869 году Д. И. Менделеевым. В то время Периодическая система включала 63 химических элементов и по виду отличалась от современной. Сейчас в Периодической системы входят около ста двадцати химических элементов.

Периодическую систему составлен в виде таблицы, в которой химические элементы расположены в определенном порядке: по мере роста их атомных масс. Сейчас существует много видов изображения Периодической системы. Наиболее распространенным является изображение в виде таблицы с расположением элементов слева направо.

Все химические элементы в Периодической системе объединены в периоды и группы. Периодическая система включает семь периодов и восемь групп. Периодами называют горизонтальные ряды химических элементов, в которых свойства элементов изменяются от типичных металлических к неметаллическим. Вертикальные колонки химических элементов, которые содержат элементы, схожие по химическим свойствам, образуют группы химических элементов.

Первый, второй и третий периоды называют малыми, поскольку они содержат небольшое количество элементов (первый — два элемента, второй и третий — по восемь элементов). Элементы второго и третьего периодов называют типовыми, их свойства закономерно изменяются от типичного металла до инертного газа.

Все остальные периоды называют большими (четвертый и пятый содержат по 18 элементов, шестой — 32 и седьмой — 24 элемента). Особое сходство свойств проявляют элементы, находящиеся внутри больших периодов, в конце каждого четного ряда. Это так называемые триады: Ферум — Кобальт — Никол, образующих семью железа, и две другие: Рутений — Родий — Палладий и Осмий — Иридий — Платина, которые образуют семью платиновых металлов (платиноидов).

В нижней части таблицы Д. И. Менделеева расположены химические элементы, образующие семью лантаноидов и семью актиноидов. Все эти элементы формально входят в состав третьей группы и идут после химических элементов лантана (номер 57) и актиния (номер 89).

Периодическая система элементов содержит десять рядов. Малые периоды (первый, второй и третий) состоят из одного ряда, большие периоды (четвертый, пятый и шестой) содержат по два ряда каждый. В седьмом периоде находится один ряд.

Каждый большой период состоит из четного и нечетного рядов. В парных рядах содержатся элементы металлы, в нечетных рядах свойства элементов изменяются так, как в типовых элементов, т.е. от металлических до выраженных неметаллических.

Каждая группа таблицы Д. И. Менделеева состоит из двух подгрупп: главной и побочной. В состав главных подгрупп входят элементы как малых, так и больших периодов, то есть главные подгруппы начинаются либо с первого, или второго периода. В состав побочных подгрупп входят элементы только больших периодов, т.е. побочные подгруппы начинаются лишь с четвертого периода.

Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

Д. И. Менделеев

Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

См. также , Атомный вес.

Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.

Д. И. Менделеев пришел к выводу, что их свойства должны быть обусловлены какими-то фундаментальными общими характеристиками. Такой фундаментальной характеристикой для химического элемента он выбрал атомную массу элемента и кратко сформулировал периодический закон (1869 г.):

Свойства элементов, а также свойства образуемых ими простых и сложных тел находятся в периодической зависимости от величин атомных весов элементов.

Заслуга Менделеева состоит в том, что он понял проявленную зависимость как объективную закономерность природы, чего не смогли сделать его предшественники. Д. И. Менделеев считал, что в периодической зависимости от атомной массы находятся состав соединений, их химические свойства, температуры кипения и плавления, строение кристаллов и тому подобное. Глубокое понимание сути периодической зависимости дало Менделееву возможность сделать несколько важных выводов и предположений.

Современная таблица Менделеева

Во-первых, из известных в то время 63 элементов Менделеев изменил атомные массы почти у 20 элементов (Be, In, La, Y, Ce, Th, U). Во-вторых, он предсказал существование около 20 новых элементов и оставил для них место в периодической системе. Три из них, а именно экабор, екаалюминий и екасилиций были описаны достаточно подробно и с удивительной точностью. Это триумфально подтвердилось в течение последующих пятнадцати лет, когда были открыты элементы Галлий (екаалюминий), скандий (экабор) и Германий (екасилиций).

Периодический закон является одним из фундаментальных законов природы. Его влияние на развитие научного мировоззрения можно сравнить только с законом сохранения массы и энергии или квантовой теории. Еще во времена Д. И. Менделеева периодический закон стал основой химии. Дальнейшие открытия строения и явления изотопии показали, что главной количественной характеристикой элемента является не атомная масса, а заряд ядра(Z). В 1913 г. Мозли и Резерфорд ввели понятие «порядковый номер элемента», пронумеровали в периодической системе все символы и показали, что в основу классификации элементов является порядковый номер элемента, равный заряда ядер их атомов.

Это утверждение известно сейчас как закон Мозли.

Поэтому современное определение периодического закона формулируется следующим образом:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от значения заряда их атомных ядер (или от порядкового номера элемента в периодической системе).

Электронные структуры атомов элементов наглядно показывают, что при росте заряда ядра происходит закономерное периодическое повторение электронных структур, а значит, и повторение свойств элементов. Это отражается в периодической системе элементов, для которой предложено несколько сотен вариантов. Чаще всего используют две формы таблиц — сокращенную и развернутую, — содержащие все известные элементы и имеющие свободные места для пока не открытых.

Каждый элемент занимает в периодической таблице определенную ячейку, в которой указано символ и название элемента, его порядковый номер, относительную атомную массу, а для радиоактивных элементов в квадратных скобках приведены массовое число наиболее стабильного или доступного изотопа. В современных таблицах часто приводятся и некоторые другие справочные сведения: плотность, температуры кипения и плавления простых веществ и т.п.

Периоды

Основными структурными единицами периодической системы есть периоды и группы — естественные совокупности, на которые делятся химические элементы по электронным структурами.

Период — это горизонтальный последовательный ряд элементов, в атомах которых электроны заполняют одинаковое количество энергетических уровней.

Номер периода совпадает с номером внешнего квантового уровня. Например, элемент кальций (4s 2) находится в четвертом периоде, то есть его атом имеет четыре энергетические уровни, а валентные электроны находятся на внешнем, четвертом уровне. Разница в последовательности заполнения как внешних, так и более близких к ядру электронных слоев объясняет причину различной длины периодов.

В атомов s- и р-элементов идет застройка внешнего уровня, в d-элементов — второго снаружи, а в f-элементов — третьего снаружи энергетического уровня.

Поэтому различие в свойствах наиболее отчетливо проявляется в соседних s- или р-элементах. В d- и особенно f-элементах одного и того же периода различие в свойствах менее значительно.

Как уже упоминалось, по признаку номера энергетического подуровня застраиваемого электронами, элементы объединяются в электронные семьи. Например, в IV-VI периодах находятся семьи, которые содержат по десять d-элементов: 3d-семья (Sc-Zn), 4d- семья (Y-Cd), 5d- семья (La, Hf-Hg). В шестом и седьмом периодах по четырнадцать элементов составляют f-семьи: 4f-семью (Се-Lu), которая носит название лантаноидной, и 5f-семью (Th-Lr) — актиноидную. Эти семьи размещают под периодической таблицей.

Первые три периода называются малыми, или типичными периодами, поскольку свойства элементов этих периодов является основой для распределения всех других элементов на восемь групп. Все остальные периоды, включая и седьмой, незавершенный, называются большими периодами.

Все периоды, кроме первого, начинаются с щелочных (Li, Na, K, Rb, Cs, Fr) и заканчиваются, за исключением седьмого, незавершенного, инертными элементами (He, Ne, Ar, Kr, Xe, Rn). Щелочные металлы имеют одну и ту же внешнюю электронную конфигурацию n s 1 , где n — номер периода. Инертные элементы, кроме гелия (1s 2), имеют одинаковое строение внешнего электронного слоя: n s 2 n p 6 , то есть электронными аналогами.

Рассмотренная закономерность дает возможность прийти к выводу:

Периодическое повторение одинаковых электронных конфигураций внешнего электронного слоя является причиной сходства физических и химических свойств у элементов-аналогов, так как именно внешние электроны атомов в основном определяют их свойства.

В малых типовых периодах с увеличением порядкового номера наблюдается постепенное уменьшение металлических и рост неметаллических свойств, поскольку увеличивается количество валентных электронов на внешнем энергетическом уровне. Например, атомы всех элементов третьего периода имеют по три электронных слоя. Строение двух внутренних слоев одинаково для всех элементов третьего периода (1s 2 2s 2 2p 6), а строение внешнего, третьего, слоя различно. При переходе от каждого предыдущего элемента к каждому последующему заряд ядра атома возрастает на единицу и соответственно увеличивается количество внешних электронов. В результате их притяжение к ядру усиливается, а радиус атома уменьшается. Это приводит к ослаблению металлических свойств и росту неметаллических.

Третий период начинается очень активным металлом натрием (11 Na — 3s 1), за которым следует несколько менее активный магний (12 Mg — 3s 2). Оба эти металлы относятся к 3s-семье. Первый р-элемент третьего периода алюминий (13 Al — 3s 2 3p 1), металлическая активность которого меньше, чем у магния, имеет амфотерные свойства, то есть в химических реакциях может вести себя и как неметалл. Далее следуют неметаллы кремний (14 Si — 3s 2 3p 2), фосфор (15 P — 3s 2 3p 3), сера (16 S — 3s 2 3p 4), хлор (17 Cl — 3s 2 3p 5). Их неметаллические свойства усиливаются от Si к Cl, который является активным неметаллом. Период заканчивается инертным элементом аргоном (18 Ar — 3s 2 3p 6).

В пределах одного периода свойства элементов меняются постепенно, а при переходе от предыдущего периода к следующему наблюдается резкое изменение свойств, поскольку начинается застройка нового энергетического уровня.

Постепенность изменения свойств характерна не только для простых веществ, но и для сложных соединений, как это представлено в таблице 1.

Таблица 1 — Некоторые свойства элементов третьего периода и их соединений

Электронная семья s-элементы р-элементы
Символ элемента Na Mg Al Si P S Cl Ar
Заряд ядра атома +11 +12 +13 +14 +15 +16 +17 +18
Внешняя электронная конфигурация 3s 1 3s 2 3s 2 3p 1 3s 2 3p 2 3s 2 3p 3 3s 2 3p 4 3s 2 3p 5 3s 2 3p 6
Атомный радиус, нм 0,189 0,160 0,143 0,118 0,110 0,102 0,099 0,054
Максимальная валентность I II III IV V VI VII
Высшие оксиды и их свойства Na 2 O MgO Al 2 O 3 SiO 2 P 2 O 5 SO 3 Cl 2 O 7
Основные свойства Амфотерные свойства Кислотные свойства
Гидраты оксидов (основы или кислоты) NaOH Mg (OH) 2 Al (OH) 3 H 2 SiO 3 H 3 PO 4 H 2 SO 4 HСlO 4
Основание Слабое основание Амфотерный гидроксид Слабая кислота Кислота средней силы Сильная кислота Сильная кислота
Соединения с водородом NaH MgH 2 AlH 3 SiH 4 PH 3 H 2 S HCl
Твердые солеобразные вещества Газообразные вещества

В больших периодах металлические свойства ослабляются медленнее. Это связано с тем, что, начиная с четвертого периода, появляются десять переходных d-элементов, в которых застраивается не внешний, а второй снаружи d-подуровень, а на внешнем слое d-элементов находятся один или два s-электрона, которые и определяют в известной степени свойства этих элементов. Таким образом, для d-элементов закономерность несколько усложняется. Например, в пятом периоде металлические свойства постепенно уменьшаются от щелочного Rb, достигают минимальной силы у металлов семьи платины (Ru, Rh, Pd).

Однако после неактивного Ag серебра размещается кадмий Cd, у которого наблюдается скачкообразный рост металлических свойств. Далее с ростом порядкового номера элемента появляются и постепенно усиливаются неметаллические свойства вплоть до типового неметалла йода. Заканчивается этот период, как и все предыдущие, инертным газом. Периодическая смена свойств элементов внутри больших периодов позволяет разделить их на два ряда, в которых вторая часть периода повторяет первую.

Группы

Вертикальные столбики элементов в периодической таблице — группы состоят из подгрупп: главной и побочной, они иногда обозначаются буквами А и Б соответственно.

В состав главных подгрупп входят s- и р-элементы, а в состав побочных — d- и f-элементы больших периодов.

Главная подгруппа — это совокупность элементов, которая размещается в периодической таблице вертикально и имеет одинаковую конфигурацию внешнего электронного слоя в атомах.

Как следует из приведенного определения, положения элемента в главной подгруппе определяется общим количеством электронов (s- и р-) внешнего энергетического уровня, равным номеру группы. Например, сера (S — 3s 2 3p 4 ), в атоме которого на внешнем уровне содержится шесть электронов, относится к главной подгруппе шестой группы, аргон (Ar — 3s 2 3p 6 ) — к главной подгруппе восьмой группы, а стронций (Sr — 5s 2 ) — к ІІА-подгруппе.

Элементы одной подгруппы характеризуются сходством химических свойств. В качестве примера рассмотрим элементы ІА и VІІА подгрупп (табл.2). С ростом заряда ядра увеличивается количество электронных слоев и радиус атома, но количество электронов на внешнем энергетическом уровне остается постоянной: для щелочных металлов (подгруппа IА) — один, а для галогенов (подгруппа VIIА) — семь. Поскольку именно внешние электроны наиболее существенно влияют на химические свойства, то понятно, что каждая из рассмотренных групп элементов-аналогов имеет подобные свойства.

Но в пределах одной подгруппы наряду с подобием свойств наблюдается их некоторое изменение. Так, элементы подгруппы ІА все, кроме Н — активные металлы. Но с ростом радиуса атома и количества электронных слоев экранирующих влияние ядра на валентные электроны, металлические свойства усиливаются. Поэтому Fr более активный металл, чем Сs, a Cs — более активный, чем R в и т.д. А в подгруппе VIIA по той же причине ослабляются неметаллические свойства элементов при росте порядкового номера. Поэтому F — более активный неметалл по сравнению с Cl, a Cl — более активный неметалл сравнению с Br и т.д.

Таблица 2 — Некоторые характеристики элементов ІА и VІІА-подгрупп

период Подгруппа IA Подгруппа VIIA
Символ элемента Заряд ядра Радиус атома, нм Символ элемента Заряд ядра Радиус атома, нм Внешняя электронная конфигурацiя
II Li +3 0,155 2 s 1 F +9 0,064 2 s 2 2 p 5
III Na +11 0,189 3 s 1 Cl +17 0,099 3 s 2 3 p 5
IV K +19 0,236 4 s 1 Br 35 0,114 4 s 2 4 p 5
V Rb +37 0,248 5 s 1 I +53 0,133 5 s 2 5 p 5
VI Cs 55 0,268 6 s 1 At 85 0,140 6 s 2 6 p 5
VII Fr +87 0,280 7 s 1

Побочные подгруппа — это совокупность элементов, размещаемых в периодической таблице вертикально и имеют одинаковое количество валентных электронов за счет застройки внешнего s- и втором снаружи d-энергетических подуровней.

Все элементы побочных подгрупп относятся к d-семейству. Эти элементы иногда называют переходными металлами. В побочных подгруппах свойства изменяются более медленно, поскольку в атомах d-элементов электроны застраивают второй извне энергетический уровень, а на внешнем уровне находятся только один или два электрона.

Положение первых пяти d-элементов (подгруппы IIIБ- VIIБ) каждого периода можно определить с помощью суммы внешних s-электронов и d-электронов второго снаружи уровня. Например, из электронной формулы скандия (Sc — 4s 2 3d 1 ) видно, что он размещается в побочной подгруппе (поскольку является d-элементом) третьей группы (поскольку сумма валентных электронов равна трем), а марганец (Mn — 4s 2 3d 5 ) размещается в побочной подгруппе седьмой группы.

Положение последних двух элементов каждого периода (подгруппы IБ и IIБ) можно определить по количеству электронов на внешнем уровне, поскольку в атомах этих элементов предыдущий уровень является полностью завершенным. Например, Ag (5s 1 5d 10) размещается в побочной подгруппе первой группы, Zn (4s 2 3d 10) — в побочной подгруппе второй группы.

Триады Fe-Co-Ni, Ru-Rh-Pd и Os-Ir-Pt размещены в побочной подгруппе восьмой группы. Эти триады образуют две семьи: железа и платиноидов. Кроме указанных семей отдельно выделяют семью лантаноидов (четырнадцать 4f-элементов) и семью актиноидов (четырнадцать 5f-элементов). Эти семьи принадлежат к побочной подгруппе третьей группы.

Рост металлических свойств элементов в подгруппах сверху вниз, а также уменьшение этих свойств в пределах одного периода слева направо обусловливают появление в периодической системе диагональной закономерности. Так, Be очень похож на Al, B — на Si, Ti — на Nb. Это ярко проявляется в том, что в природе эти элементы образуют подобные минералы. Например, в природе Те всегда бывает с Nb, образуя минералы — титанониобаты.

Лучшие статьи по теме