Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех
  • Главная
  • Смартфоны
  • Как называется углерод. Углерод — характеристика элемента и химические свойства

Как называется углерод. Углерод — характеристика элемента и химические свойства

Углерод (химический символ - C) - химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6, атомная масса природной смеси изотопов 12,0107 г/моль.

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C.

Изотопы:
Природный углерод состоит из двух стабильных изотопов - 12С (98,892 %) и 13С (1,108 %) и одного радиоактивного изотопа 14С (β-излучатель, Т½= 5730 лет) , сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.
На образовании и распаде 14С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропия:
Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

Тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp3-гибридизация) . Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

Тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация) . Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
- дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация) . При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию - карбин.

Степени окисления +4, −4, редко +2 (СО, карбиды металлов) , +3 (C2N2, галогенцианы) ; сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С0 к С4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Химические свойства углерода
Взаимодействие с фтором
Углерод обладает низкой реакционной способностью, из галогенов реагирует только с фтором:

С + 2F2 = CF4.

Взаимодействие с кислородом
При нагревании взаимодействует с кислородом:

2С + О2 = 2СО,

С + О2 = СО2,

образуя оксиды СО и СО2.

Взаимодействие с другими неметаллами
Реагирует с серой:

не взаимодействует с азотом и фосфором.

Реагирует с водородом в присутствии никелевого катализатора, образуя метан:

Взаимодействие с металлами
Способен взаимодействовать с металлами, образуя карбиды:
Ca + 2C = CaC2.

Взаимодействие с водой
При пропускании водяных паров через раскаленный уголь образуется оксид углерода (II) и водород:
C + H2O = CO + H2.

Восстановительные свойства
Углерод способен восстанавливать многие металлы из их оксидов:
2ZnO + C = 2Zn + CO2.

Концентрированные серная и азотная кислоты при нагревании окисляют углерод до оксида углерода (IV):

C + 2H2SO4 = CO2 + 2SO2 + 2H2O;
C + 4HNO3 = CO2 + 4NO2 + 2H2O.

Кратко рассказать о том, что такое углерод, невозможно. Ведь он - основа жизни. Данный элемент имеется во всех органических соединениях, и только он может формировать молекулы ДНК из миллионов атомов. Его свойства многочисленны, так что о нем стоит рассказать поподробней.

Формула, обозначения, особенности

Данный элемент, находящийся в таблице под порядковым номером шесть, обозначается символом «С». Электронная структурная формула углерода выглядит следующим образом: 1s 2 2s 2 2p 2 . Его масса - 12,0107 а.е.м. У этого вещества имеется:

  • Два неспаренных электрона в основном состоянии. Проявляет валентность II.
  • Четыре неспаренных электрона в возбужденном состоянии. Проявляет валентность IV.

Следует отметить, что определенная масса углерода содержится в земной коре. 0,023%, если быть точнее. Главным образом он накапливается в верхней части, в биосфере. Большая часть массы углерода литосферы накапливается в доломитах и известняках, в виде карбонатов.

Физические характеристики

Итак, что такое углерод? Это вещество, которое существует в огромном множестве аллотропных модификаций, и их физические свойства перечислять можно долго. А разнообразие веществ обуславливается способностью углерода к образованию химических связей отличающихся типов.

Что касательно свойств углерода, как простого вещества? Их можно обобщить следующим образом:

  • При нормальных условиях плотность составляет 2,25 г/см³.
  • Температура кипения равна 3506,85 °C.
  • Молярная теплоемкость - 8,54 Дж/(K.моль).
  • Критическая температура фазового перехода (когда газ не конденсируется ни при каком давлении) - 4130 К, 12 МПа.
  • Молярный объем 5,3 см³/моль.

Также стоит перечислить углеродные модификации.

Из кристаллических веществ самыми известными являются: алмаз, карбин, графит, наноалмаз, фуллерит, лонсдейлит, фуллерен, а также углеродные волокна.

К аморфным образованиям относится: древесный, ископаемый и активированный уголь, антрацит, кокс, стеклоуглерод, сажа, техуглерод и нанопена.

Но ничто из перечисленного не является чистой аллотропной формой обсуждаемого вещества. Это лишь химические соединения, в которых углерод содержится в высокой концентрации.

Структура

Интересно, что электронные орбитали атома углерода не одинаковы. Они имеют разную геометрию. Все зависит от степени гибридизации. Есть три наиболее часто встречающиеся геометрии:

  • Тетраэдрическая . Она образуется, когда происходит смешение трех р- и одного s-электронов. Такая геометрия атома углерода наблюдается у лонсдейлита и алмаза. Аналогичную структуру имеет метан и прочие углеводороды.
  • Тригональная . Данную геометрию образует смешение двух р- и одной s-электронной орбитали. Еще один р-элемент не принимает участия в гибридизации, но он задействован при образовании π-связи с прочими атомами. Эта структура свойственна фенолу, графиту и прочим модификациям.
  • Дигональная . Эта структура образуется вследствие смешения s- и р-электронов (по одному). Интересно, что выглядят электронные облака, как несимметричные гантели. Вытянуты они вдоль оного направления. Еще два р-электрона образуют пресловутые π-связи. Данная геометрия характерна для карбина.

Не так давно, в 2010 году, ученые из университета, который находится в Ноттингеме, открыли соединение, в котором сразу четыре атома оказались в одной плоскости. Его название - мономерный дилитио метандий.

Молекулы

О них стоит сказать в отдельности. Атомы обсуждаемого вещества могут соединяться, вследствие чего образуются сложные молекулы углерода. От насыщенных Na, С 2 и Н 2 , между которыми слишком слабое притяжение, их отличает склонность конденсироваться в твердое состояние. Молекулы углерода могут оставаться в газообразном состоянии, только если поддерживать высокую температуру. Иначе вещество мгновенно затвердеет.

Некоторое время тому назад в США, в Берклеевской национальной лаборатории, была синтезирована новая форма твердого углерода. Это - С36. И его молекулу образует 36 углеродных атомов. Вещество образуется вместе с фуллеренами С60. Происходит это между двумя электродами графита, в условиях пламени дугового разряда. Ученые предполагают, что молекулы нового вещества обладают интересными химико-электрическими свойствами, которые пока не изучены.

Графит

Теперь можно более подробно рассказать о самых известных модификациях такого вещества, как углерод.

Графит - это самородный минерал со слоистой структурой. Вот его особенности:

  • Он отлично проводит ток.
  • Является относительно мягким веществом из-за своей низкой твердости.
  • При нагревании в отсутствие воздуха проявляет устойчивость.
  • Не плавится.
  • На ощупь жирный, скользкий.
  • В природном графите содержится 10-12% примесей. Как правило, это окислы железа и глины.

Если говорить о химических свойствах, то стоит отметить, что с солями и щелочными металлами это вещество образует так называемые соединения включения. Еще графит при высокой температуре реагирует с кислородом, сгорая до углекислого газа. Но вот контакт с неокисляющими кислотами никакого результата за собой не влечет - это вещество в них просто не растворяется.

Применяют графит в самых разных сферах. Его используют при изготовлении футеровочных плит и плавильных тиглей, в производстве нагревательных элементов и электродов. Без участия графита невозможно получить синтетические алмазы. Также он играет роль замедлителя нейтронов в ядерных реакторах. И, конечно же, из него делают стержни для карандашей, мешая с каолином. И это лишь часть сфер, где он используется.

Алмаз

Это метастабильный минерал, который может существовать неограниченное количество времени, что в некоторой степени обусловлено прочностью и плотностью углерода. Алмаз является самым твердым веществом по шкале Мооса, он легко разрезает стекло.

У него высокая теплопроводность, дисперсия, показатель преломления. Он износостойкий, а чтобы заставить его плавиться, нужна температура в 4000 °C и давление около 11 ГПа. Его особенность - люминесценция, способность светиться разными цветами.

Это редкое, хоть и распространенное вещество. Возраст минералов, согласно данным определенных исследований, может колебаться от 100 миллионов до 2,5 миллиарда лет. Обнаружены алмазы внеземного происхождения, возможно, даже досолнечного.

Этот минерал нашел свое применение в ювелирном деле. Ограненный алмаз, именуемый бриллиантом, стоит дорого, но статус драгоценности и красота сделали его еще более популярным. Кстати, также это вещество используют при изготовлении резцов, сверл, ножей и т. д. Благодаря своей исключительной твердости, минерал применяют во многих производствах.

Карбин

В продолжение темы о том, что такое углерод, нужно пару слов сказать и о такой его модификации, как карбин. Он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами. Получен искусственным образом в начале 60-х годов советскими учеными.

Особенность данного вещества заключается в увеличивающейся под световым воздействием проводимости. Именно поэтому его стали применять в фотоэлементах.

Графен

Это первый в мире двумерный кристалл. У данной модификации большая механическая жесткость, чем у графита, и рекордно высокая теплопроводность, составляющая ~5.10 3 Вт.м −1 .К−. У носителей заряда графена высокая подвижность, именно поэтому вещество имеет перспективы в плане его использования в разных приложениях. Считается, что он может стать будущей основой наноэлектроники и даже заменить кремний в интегральных микросхемах.

Графен получают искусственно, в научных лабораториях. Для этого приходится прибегать к механическому отщеплению графитовых слоев от высокоориентированного вещества. Так получают образцы высокого качества с необходимой подвижностью носителей.

Его свойства изучены не полностью, но кое-что интересное ученые уже успели отметить. Например, в графене нет вингеровской кристаллизации. А в двойном слое вещества поведение электронов напоминает то, которое свойственно жидким кристаллам. Если соблюсти параметры скалывания на кристалле, удастся получить графеновую коробчатую наноструктуру.

Токсичность

Эту тему стоит отметить в заключение рассказа о том, что такое углерод. Дело в том, что это вещество выделяется в атмосферу вместе с выхлопными газами автомобилей. А еще при сжигании угля, подземной газификации и во многих других процессах.

Повышенное содержание этого вещества в воздухе приводит к увеличению численности заболеваний. В частности, это касается легких и верхних дыхательных путей. А токсическое действие обусловлено взаимодействием радиационного характера с β-частицами, которое ведет к тому, что химический состав молекулы меняется и свойства вещества - тоже.

Структура алмаза (а) и графита (б)

Углерод (латинское Carboneum ) - С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Встречается в природе в виде кристаллов алмаза, графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19%.

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды , соединения углерода с металлами , а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов . Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость .

Историческая справка

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец".

В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа . Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867.

В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Свойства

Известны четыре кристаллические модификации углерода:

  • графит,
  • алмаз,
  • карбин,
  • лонсдейлит.

Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен.

Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется .

Жидкий углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твёрдого углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемый «аморфный» углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит.

Физические свойства «аморфного» углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность , теплоёмкость , теплопроводность и электропроводность «аморфного» углерода всегда выше, чем графита.

Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С , уложенных параллельно друг другу.

Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Свойства углерода
Атомный номер 6
Атомная масса 12,011
Изотопы: стабильные 12, 13
нестабильные 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22
Температура плавления 3550°С
Температура кипения 4200°С
Плотность 1,9-2,3 г/см 3 (графит)

3,5-3,53 г/см 3 (алмаз)

Твердость (по Моосу) 1-2
Содержание в земной коре (масс.) 0,19%
Степени окисления -4; +2; +4

Сплавы

Сталь

Кокс применяют в металлургии, как восстановитель. Древесный уголь – в кузнечных горнах, для получения пороха (75%KNO 3 + 13%C + 12%S), для поглощения газов (адсорбция), а также в быту. Сажу применяют, как наполнитель резины, для изготовления черных красок – типографская краска и тушь, а также в сухих гальванических элементах. Стеклоуглерод применяют для изготовления аппаратуры для сильно агрессивных сред, а также в авиации и космонавтике.

Активированный уголь поглощает вредные вещества из газов и жидкостей: им заполняют противогазы, очистительные системы, его применяют в медицине при отравлениях.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Применение радиоактивного изотопа 14 C способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 C в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

Источники

Его называют основой жизни. Он есть во всех органических соединениях. Только он способен формировать молекулы из миллионов атомов, такие, как ДНК.

Узнали героя ? Это углерод . Число его соединений, известных науке, приближается к 10 000 000.

Столько не наберется у всех остальных, вместе взятых элементов. Не удивительно, что один из двух разделов химии изучает исключительно соединения углерода и проходится в старших классах.

Предлагаем вспомнить школьную программу, а так же, дополнить ее новыми фактами.

Что такое углерод

Во-первых, элемент углерод – составная . В ее новом стандарте, вещество располагается в 14-ой группе.

В устаревшем варианте системы, углерод стоит в главной подгруппе 4-ой группы.

Обозначение элемента – буква С. Порядковый номер вещества – 6, относится к группе неметаллов.

Органический углерод соседствует в природе с минеральным. Так, , и камень фуллерен – 6-ой элемент в чистом виде.

Различия во внешности обусловлены несколькими типами строения кристаллической решетки. От нее зависят и полярные характеристики минерального углерода.

Графит, к примеру, мягок, не зря же добавляется в пишущие карандаши, а всех остальных на Земле. Поэтому, логично рассмотреть свойства самого углерода, а не его модификаций.

Свойства углерода

Начнем со свойств, общих для всех неметаллов. Они электроотрицательны, то есть, оттягивают на себя общие электронные пары, образованные с другими элементами.

Получается, углерод может восстановить оксиды неметаллов до состояния металлов.

Однако, делает это 6-ой элемент лишь при нагреве. В обычных условиях вещество химически инертно.

На внешних электронных уровнях неметаллов больше электронов, чем у металлов.

Именно поэтому, атомы 6-го элемента стремятся достроить толику собственных орбиталей, чем отдавать свои частицы кому-то.

Металлам же, с минимумом электронов на внешних оболочках проще отдать отдаленные частицы, чем перетягивать на себя чужие.

Главная форма 6-го вещества – атом. По идее, речь должна идти о молекуле углерода . Из молекул составлено большинство неметаллов.

Однако, углерод с и – исключения, имеют атомную структуру. Именно за счет нее соединения элементов отличаются высокими температурами плавления.

Еще одно отличительное свойство многих форм углерода – . У того же она максимальна, равна 10-ти баллам по .

Раз разговор зашел о формах 6-го вещества, укажем, что кристаллическая – лишь одна из.

Атомы углерода не всегда выстраиваются в кристаллическую решетку. Встречается аморфная разновидность.

Примеры таковой: — древесный , кокс, стеклоуглерод. Это соединения, но не имеющие упорядоченной структуры.

Если же вещество соединено с другими, могут получиться и газы. Кристаллический углерод переходит в них при температуре в 3700 градусов.

В обычных условиях элемент газообразен, если это, к примеру, оксид углерода .

В народе его именуют угарным газом. Однако, реакция его образования активнее и быстрее, если, все же, поддать жару.

Газообразных соединений углерода с кислородом несколько. Есть еще, к примеру, монооксид.

Этот газ бесцветный и ядовитый, причем, при обычных условиях. Такая окись углерода имеет тройную связь в молекуле.

Но, вернемся к чистому элементу. Будучи довольно инертным в химическом плане, он, все же, может взаимодействовать не только с металлами, но и их оксидами, , и как видно из разговора про газы, с кислородом.

Реакция возможна и с водородом. Углерод вступит во взаимодействие, если «сыграет» один из факторов, или все вместе: температура, аллотропное состояние, дисперсность.

Под последней, подразумевается отношение площади поверхности частиц вещества к занимаемому ими объему.

Аллотропия – возможность нескольких форм одного и того же вещества, то есть, имеется в виду кристаллический, аморфный, или газообразный углерод .

Однако, как не совпадай факторы, с кислотами и щелочами элемент не реагирует вовсе. Игнорирует углерод и почти все галогены.

Чаще всего, 6-ое вещество связывается само с собой, образовывая те самые масштабные молекулы из сотен и миллионов атомов.

Сформированные молекулы, углерода реагируют с еще меньшим числом элементов и соединений.

Применение углерода

Применение элемента и его производных столь же обширно, как их число. Содержание углерода в жизни человека больше, чем может казаться.

Активированный уголь из аптеки – 6-е вещество. в из – он же.

Графит в карандашах – тоже углерод, нужный, так же, в ядерных реакторах и контактах электрических машин.

Метановое топливо тоже в списке. Диоксид углерода нужен для производства и может быть сухим льдом, то есть, хладагентом.

Углекислый газ служит консервантом, заполняя овощные хранилища, а еще, нужен для получения карбонатов.

Последние, используют в строительстве, к примеру, . А карбонат пригождается в мыловарении и стекольном производстве.

Формула углерода соответствует еще и коксу. Он пригождается металлургам.

Кокс служит восстановителем во время переплавки руды, извлечения из нее металлов.

Даже обычная сажа – углерод, используемый в качестве удобрения и наполнителя .

Не задумывались, почему автомобильные шины цвета? Это сажа. Она придает резине прочность.

Сажа, так же, входит в крема для обуви, краски для печати, туши для ресниц. Народное название употребляется не всегда. Промышленники зовут сажу техническим углеродом .

Масса углерода начинает использоваться в сфере нанотехнологий. Сделаны сверхмалые транзисторы, а еще трубки, которые в 6-7 раз прочнее .

Вот вам и неметалл. К наноизысканиям, кстати, подключились ученые из . Из углеродных трубок и графена они создали аэрогель.

Это и прочный материал. Звучит увесисто. Но, на самом деле, аэрогель легче воздуха.

В железо углерод добавляют, чтобы получить так называемую углеродистую сталь. Она тверже обычной.

Однако, массовая доля 6-го элемента в не должна превышать пары, тройки процентов. Иначе, свойства стали идут на спад.

Список можно продолжать бесконечно. Но, где бесконечно брать углерод? Добывают его или синтезируют? На эти вопросы ответим в отдельной главе.

Добыча углерода

Двуокись углерода , метан, отдельно углерод, можно получать химическим путем, то есть, намеренным синтезом. Однако, это не выгодно.

Газ углерод и его твердые модификации проще и дешевле добывать попутно с каменным углем.

Из земных недр этого ископаемого извлекают примерно 2 миллиарда тонн ежегодно. Хватает, чтобы обеспечить мир техническим углеродом.

Что касается , их извлекают из кимбирлитовых трубок. Это вертикальные геологические тела, сцементированные лавой осколки породы.

Именно в таких встречаются . Поэтому, ученые предполагают, что минерал формируется на глубинах в тысячи километров, там же, где и магма.

Месторождения графита, напротив, горизонтальны, располагаются у поверхности.

Поэтому, добыча минерала довольно проста и не затратна. В год из недр извлекают около 500 000 тонн графита.

Чтобы получить активированный уголь, приходится нагреть каменный уголь и обработать струей водяного пара.

Ученые даже разобрались, как воссоздать белки человеческого тела. Их основа – тоже углерод. Азот и водород – аминогруппа, к нему примыкающая.

Нужен, так же, кислород. То есть, белки построены на аминокислоте. Она не у всех на слуху, но для жизни куда важнее остальных.

Популярные серная, азотная, соляная кислоты, к примеру, организму нужны куда меньше.

Так что, углерод – то, за что стоит платить. Узнаем, на сколько велик разброс цен на разные товары из 6-го элемента.

Цена углерода

Для жизни, как несложно понять, углерод бесценен. Что же касается остальных сфер бытия, ценник зависит от наименования продукции и ее качества.

За , к примеру, платят больше, если не содержат сторонних включений.

Образцы аэрогеля, пока, стоят десятки долларов за несколько квадратных сантиметров.

Но, в будущем, производители обещают поставлять материал рулонами и просить недорого.

Технический углерод, то есть, сажа, реализуется по 5-7 рублей за кило. За тонну, соответственно, отдают около 5000-7000 рублей.

Однако, углеродный налог, вводимый в большинстве развитых стран, может обеспечить рост цен.

Углеродную промышленность считают причиной парникового эффекта. Предприятия обязывают платить за выбросы, в частности, CO 2 .

Это главный парниковый газ и, одновременно, индикатор загрязнения атмосферы. Эта информация – ложка дегтя в бочке меда.

Она позволяет понять, что у углерода, как и всего в мире, есть обратная сторона, а не только плюсы.

УГЛЕРОД
С (carboneum) , неметаллический химический элемент IVA подгруппы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.). Углерод широко распространен, но содержание его в земной коре всего 0,19% (см. также АЛМАЗ ; ФУЛЛЕРЕНЫ).

Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы - для изготовления шлифовального и режущего инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al4C3, SiC, B4C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость.
См. также СПЛАВЫ . В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении - это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.
Историческая справка. Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название "графит", происходящее от греческого слова, означающего "писать", предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны "черный свинец", "карбидное железо", "серебристый свинец". В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа. Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.
Аллотропия. Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации - алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С-С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С-С (длина связи 1,54 , отсюда ковалентный радиус 1,54/2 = 0,77) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит - мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом*см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис. 1,б) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита - эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см3, алмаза - 3,51 г/см3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита. Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода. При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов. К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь - примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты - коксовый газ (H2, CH4, CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса - коксовой печи - приведена на рис. 3. Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.
Строение атома углерода. Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода - 13C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14C с периодом полураспада 5730 лет, обладающий b-излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO2. После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14С. Снижение b-излучения 14CO2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.
См. также ДАТИРОВКА ПО РАДИОАКТИВНОСТИ. В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s22s22px12py12pz0. Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s-электронов и перескок одного из этих электронов на 2pz-орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С-С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si-Si она составляет всего 210 кДж/моль, поэтому длинные цепочки -Si-Si- неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF4 и CCl4. Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры.
См. ХИМИЯ ОРГАНИЧЕСКАЯ . В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды - углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, - фторхлоруглеводороды). В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе "геодезического купола", изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван "бакминстерфуллеренами" или "фуллеренами" (а также более коротко - "фазиболами" или "бакиболами"). Фуллерены - третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, - была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С60 УГЛЕРОД 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.
См. также ФУЛЛЕРЕНЫ .
Стандартная атомная масса. В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе.
См. АТОМНАЯ МАССА . Химические свойства углерода и некоторых его соединений. Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов. Субоксид углерода C3O2 образуется при дегидратации малоновой кислоты над P4O10:

C3O2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.
Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H2O = CO + H2; образующаяся газовая смесь называется "водяной газ" и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO2: CO + O2 (r) CO2, эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO2, но при 1000° C равновесие устанавливается при малых концентрациях СO2. CO реагирует с хлором, образуя фосген - COCl2, аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO)x, являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа - более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО - "угарный газ"). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице. Диоксид углерода, или оксид углерода(IV) CO2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO2 (тривиальное название - "углекислый газ") образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО2:

Такой реакцией часто пользуются в лабораторной практике для получения CO2. Этот газ можно получить и при прокаливании бикарбонатов металлов:

При газофазном взаимодействии перегретого пара с СО:

При сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же - СO2 и H2O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА). Электронное строение оксидов углерода. Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар - тремя резонансными формами:

Все оксиды углерода имеют линейное строение.
Угольная кислота. При взаимодействии СO2 с водой образуется угольная кислота H2CO3. В насыщенном растворе CO2 (0,034 моль/л) только часть молекул образует H2CO3, а большая часть CO2 находится в гидратированном состоянии CO2*H2O.
Карбонаты. Карбонаты образуются при взаимодействии оксидов металлов с CO2, например, Na2O + CO2 -> NaHCO3 которые при нагревании разлагаются с выделением СО2: 2NaHCO3 -> Na2CO3 + H2O + CO2 Карбонат натрия, или соду, производят в содовой промышленности в больших количествах преимущественно методом Сольве:

Другим методом соду получают из CO2 и NaOH

Карбонат-ион CO32- имеет плоское строение с углом O-C-O, равным 120°, и длиной СО-связи 1,31
(см. также ЩЕЛОЧЕЙ ПРОИЗВОДСТВО).
Галогениды углерода. Углерод непосредственно реагирует с галогенами при нагревании, образуя тетрагалогениды, но скорость реакции и выход продукта невелики. Поэтому галогениды углерода получают другими методами, например, хлорированием дисульфида углерода получают CCl4: CS2 + 2Cl2 -> CCl4 + 2S Тетрахлорид CCl4 - негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl4 образуется и по фотохимической реакции между метаном СH4 и Сl2; при этом возможно образование продуктов неполного хлорирования метана - CHCl3, CH2Cl2 и CH3Cl. Аналогично протекают реакции и с другими галогенами.
Реакции графита. Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl3) проникают между слоями, образуя соединения типа KC8, KC16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (-СООН) - соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С6(COOH)6. В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.
Карбиды. Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA-IIIA подгрупп) образуют солеподобные карбиды, например Na2C2, CaC2, Mg4C3, Al4C3. В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например CaC2 + 2H2O = C2H2 + Ca(OH)2 Образующийся по реакции ацетилен C2H2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B4C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W2C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC - наиболее тугоплавкие вещества (т.пл. = 4000-4200° С), карбид диниобия Nb2C - сверхпроводник при 9,18 К, TiC и W2C по твердости близки алмазу, а твердость B4C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см. рис. 2). Инертные карбиды образуются, если радиус переходного металла Азотпроизводные углерода. К этой группе относится мочевина NH2CONH2 - азотное удобрение, применяемое в виде раствора. Мочевину получают из NH3 и CO2 при нагревании под давлением:

Дициан (CN)2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu2+: 2CN- -> (CN)2 + 2e. Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу []-0,5x, где х - координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион []2-, гексацианоферрат(III) []3-, дицианоаргентат []-:

Карбонилы. Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO)4, Fe(CO)5, Fe2(CO)9, []3, Mo(CO)6, []2. Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO)4 - летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H2Fe(CO)4 и HCo(CO)4, проявляющие кислотные свойства и реагирующие со щелочью: H2Fe(CO)4 + NaOH -> NaHFe(CO)4 + H2O Известны также карбонилгалогениды, например Fe(CO)X2, Fe(CO)2X2, Co(CO)I2, Pt(CO)Cl2, где Х - любой галоген
(см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ).
Углеводороды. Известно огромное количество соединений углерода с водородом
(см. ХИМИЯ ОРГАНИЧЕСКАЯ).
ЛИТЕРАТУРА
Сюняев З.И. Нефтяной углерод. М., 1980 Химия гиперкоординированного углерода. М., 1990

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "УГЛЕРОД" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Углерод 14, 14C Альтернативные названия радиоуглерод, радиокарбон Нейтронов 8 Протонов 6 Свойства нуклида Атомная масса … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 12, 12C Нейтронов 6 Протонов 6 Свойства нуклида Атомная масса 12,0000000(0) … Википедия

    Таблица нуклидов Общие сведения Название, символ Углерод 13, 13C Нейтронов 7 Протонов 6 Свойства нуклида Атомная масса 13,0033548378(10) … Википедия

    - (лат. Carboneum) С, химический. элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Основные кристаллические модификации алмаз и графит. При обычных условиях углерод химически инертен; при высоких… … Большой Энциклопедический словарь

Лучшие статьи по теме