Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

Низшие альдегиды. Физические и химические свойства альдегидов

Первая группа свойств — реакции присоединения. В карбонильной группе между углеродом и кислородом присутствует двойная связь, которая, как вы помните, состоит из сигма-связи и пи-связи. В реакциях присоединения пи-связь рвется и образуются две сигма связи — одна с углеродом, вторая — с кислородом. На углероде сосредоточен частичный положительный заряд, на кислороде — частичный отрицательный. Поэтому к углероду присоединяется отрицательно заряженная частица реагента, анион, а к кислород — положительно заряженная часть молекулы.

Первое свойство — гидрирование, присоединение водорода.

Реакция проходит при нагревании. Применяется уже известный вам катализатор гидрирования — никель. Из альдегидов получаются первичные спирты, из кетонов вторичные.

У вторичных спиртов гидроксогруппа связана со вторичным атомом углерода.

Второе свойство — гидратация, присоединение воды. Эта реакция возможна только для формальдегида и ацетальдегида. Кетоны совсем не реагируют с водой.

Все реакции присоединения идут таким образом, что плюс идет к минусу, а минус к плюсу.

Как вы помните из видео про спирты , наличие двух гидроксогрупп у одного атома почти невозможная ситуация, такие вещества крайне неустойчивы. Так вот конкретно два этих случая — гидрат формальдегида и уксусного альдегида — возможны, хотя и существуют только в растворе.

Сами реакции знать не обязательно. Скорее всего, вопрос на экзамене может звучать как констатация факта, допустим, с водой реагируют и перечислены вещества. Среди их перечня которых могут быть метаналь или этаналь.

Третье свойство — присоединение синильной кислоты.

Снова плюс идет к минусу, а минус к плюсу. Получаются вещества, называемые гидроксинитрилами. Опять же, сама реакция встречается нечасто, но знать об этом свойстве нужно.

Четвертое свойство — присоединение спиртов.

Здесь снова не нужно знать наизусть уравнение реакции, просто надо понимать, что такое взаимодействие возможно.

Как обычно в реакциях присоединения к карбонильной группе — плюс к минусу, а минус к плюсу.

Пятое свойство — реакция с гидросульфитом натрия.

И снова, реакция довольно сложная, выучить ее вряд ли получится, но это одна из качественных реакций на альдегиды, потому что полученная натриевая соль выпадает в осадок. То есть по факту вы должны знать, что альдегиды реагируют с гидросульфитом натрия, этого будет достаточно.

На этом закончим с первой группой реакций. Вторая группа — реакции полимеризации и поликонденсации.

2. Полимеризация и поликонденсация альдегидов

С полимеризацией вы знакомы: полиэтилен, бутадиеновый и изопреновый каучуки, поливинилхлорид — это продукты объединения множества молекул (мономеров) в одну большую, в единую полимерную цепь. То есть получается один продукт. При поликонденсации происходит то же самое, но помимо полимера получаются еще низкомолекулярные продукты, например, вода. То есть получается два продукта.

Итак, шестое свойство — полимеризация. Кетоны в эти реакции не вступают, промышленное значение имеет только полимеризация формальдегида.

Пи-связь рвется и образуются две сигма связи с соседними мономерами. Получается полиформальдегид, называемый также параформ. Вероятнее всего, вопрос на экзамене может звучать так: в реакции полимеризации вступают вещества. И приведен список веществ, среди которых может быть в формальдегид.

Седьмое свойство — поликонденсация. Еще раз: при поликонденсации помимо полимера получается еще низкомолекулярное соединение, например, вода. Формальдегид вступает в такую реакцию с фенолом. Для наглядности сначала запишем уравнение с двумя молекулами фенола.

В результате получается такой димер и отщепляется молекула воды. Теперь запишем уравнение реакции в общем виде.

Продуктом поликонденсации является феноло-формальдегидная смола. Она находит широкое применение — от клеев и лаков до пластмасс и компонента древесно-стружечных плит.

Теперь третья группа свойств — реакции окисления.

3. Окисление альдегидов и кетонов

Восьмой реакцией в общем списке является качественная реакция на альдегидную группу — окисление аммиачным раствором оксида серебра. Реакция «серебряного зеркала». Скажу сразу, кетоны не вступают в эту реакцию, только альдегиды.

Альдегидная группа окисляется до карбоксильной, кислотной группы, но в присутствии аммиака, который является основание, сразу же происходит реакция нейтрализации и получается соль — ацетат аммония. Серебро выпадает в осадок, покрывая пробирку изнутри и создавая зеркальную поверхность. Эта реакция встречается на ЕГЭ постоянно.

Кстати, эта же реакция является качественной на другие вещества, имеющие альдегидную группу, например, на муравьиную кислоту и ее соли, а также на глюкозу.

Девятая реакция тоже качественная на альдегидную группу — окисление свежеосажденным гидроксидом меди два. Здесь тоже замечу, что кетоны не вступают в эту реакцию.

Визуально будет наблюдаться сначала образование желтого осадка, который потом становится красным. В некоторых учебниках встречается информация, что сначала образуется гидроксид меди один, имеющий желтый цвет, который затем распадается на красный оксид меди один и воду. Так вот это неверно — по последним данным в процессе выпадения осадка меняется размер частиц оксида меди один, которые в конечном счете достигают размеров, окрашенных именно в красный цвет. Альдегид окисляется до соответствующей карбоновой кислоты. Реакция встречается на егэ очень часто.

Десятая реакция — окисление альдегидов подкисленным раствором перманганата калия при нагревании.

Происходит обесцвечивание раствора. Альдегидная группа окисляется до карбоксильной, то есть альдегид окисляется до соответствующей кислоты. Для кетонов эта реакция не имеет практического смысла, поскольку происходит разрушение молекулы и в результате получается смесь продуктов.

Важно отметить, что муравьиный альдегид, формальдегид, окисляется до углекислого газа, потому как соответствующая ему муравьиная кислота сама не устойчива к действию сильных окислителей.

В итоге углерод переходит из степени окисления 0 в степень окисления +4. Напомню, что и метанол, как правило, в таких условиях окисляется по максимуму до CO 2 , проскакивая стадию и альдегида, и кислоты. Эту особенность надо запомнить.

Одиннадцатая реакция — горение, полное окисление. И альдегиды, и кетоны сгорают до углекислого газа и воды.

Запишем уравнение реакции в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле карбонильного соединения, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n воды, итого 3n. Слева атомов кислорода столько же — 3n, но один из атомов находится в молекуле альдегида, значит его надо вычесть из общего количества, чтобы получить количество атомов, приходящихся на молекулярный кислород. Выходит 3n-1 атомов содержит молекулярный кислород, а значит молекул в 2 раза меньше, потому как в состав одной молекулы входят 2 атома. То есть (3n-1)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания карбонильных соединений в общем виде.

И, наконец, двенадцатое свойство, относящееся к реакциям замещения — галогенирование по альфа-атому углерода. Еще раз обратимся к строению молекулы альдегида. Кислород оттягивает на себя электронную плотность, создавая частичный положительный заряд а углероде. Метильная группа пытается компенсировать этот положительный заряд, смещая к нему электроны от водорода по цепи сигма-связей. Связь углерод-водород становится более полярной и водород легче отрывается при атаке реагентом. Такой эффект наблюдается только для альфа-атома углерода, то есть атома следующего за альдегидной группой, вне зависимости от длины углеводородного радикала.

Таким образом, возможно получение, например, 2-хлорацетальдегида. Возможно дальнейшее замещение атомов водорода до трихлорэтаналя.

Органические ЛС

Мы изучаем ЛС, поделенные на группы в соответствии с химической классификацией. Достоинством этой классификации является возможность выявления и исследования общих закономерностей при разработке методов получения препаратов, составляющих группу, методов фармацевтического анализа, основанных на физических и химических свойствах веществ, установления связи между химической структурой и фармакологическим действием.

Все ЛВ делятся на неорганические и органические. Неорганические, в свою очередь, классифицируются в соответствии с положением элементов в ПС. А органические – делятся на производные алифатического, алициклического, ароматического и гетероциклического ряда, каждый из которых подразделяется по классам: углеводороды, галогенпроизводные углеводородов, спирты, альдегиды, кетоны, кислоты, эфиры простые и сложные и т.д.

АЛИФАТИЧЕСКИЕ СОЕДИНЕНИЯ, КАК ЛС.

Препараты альдегидов и их производных. Углеводы

Альдегиды

К этой группе соединений относятся органические лекарственные вещества, содержащие альдегидную группу, или их функциональные производные.

Общая формула:

Фармакологические свойства

Введение альдегидной группы в структуру органического соединения сообщает ему наркотическое и антисептическое действие. В этом действие альдегидов сходно с действием спиртов. Но в отличие от спиртовой, альдегидная группа усиливает токсичность соединения.

Факторы влияния строения на фармакологическое действие :

    удлинение алкильного радикала повышает активность, но одновременно растет токсичность;

    такой же эффект имеет введение непредельной связи и галогенов;

    к снижению токсичности приводит образование гидратной формы альдегида. Но способность к образованию устойчивой гидратной формы проявляется только у хлорпроизводных альдегидов. Так, формальдегид является протоплазматическим ядом, используется для дезинфекции, уксусный альдегид и хлораль не применяются в медицине из-за высокой токсичности, а хлоралгидрат – ЛС, применяется как снотворное, успокоительное.

Сила наркотического (фармакологического) действия и токсичность росли от формальдегида к ацетальдегиду и хлоралю. Образование гидратной формы (хлоралгидрат) позволяет резко снизить токсичность, сохранив фармакологический эффект.

По физическому состоянию альдегиды могут быть газообразными (низкомолекулярные), жидкостями и твердыми веществами . Низкомолекулярные имеют резкий неприятный запах, высокомолекулярные – приятный цветочный.

Химические свойства

В химическом отношении это высоко реакционноспособные вещества, что обусловлено наличием в их молекуле карбонильной группы.

Высокая реакционная способность альдегидов объясняется:

а) наличием поляризованной двойной связи

б) дипольным моментом карбонила

в) наличием частичного положительного заряда на атоме углерода карбонила

σ -

σ + H

Двойная связь между С и О, в отличие от двойной связи между двумя углеродами, сильно поляризована, так как кислород обладает значительно большей электроотрицательностью, чем углерод, и электронная плотность π-связи смещается к кислороду. Такая высокая поляризация определяет электрофильные свойства углерода карбонильной группы и его способность реагировать с нуклеофильными соединениями (вступать в реакции нуклеофильного присоединения). Кислород группы обладает нуклеофильными свойствами.

Характерны реакции окисления и нуклеофильного присоединения

I. Реакции окисления.

Альдегиды легко окисляются . Окисление альдегидов до кислот происходит под влиянием как сильных, так и слабых окислителей .

Многие металлы – серебро, ртуть, висмут, медь, восстанавливаются из растворов их солей, особенно в присутствии щелочи. Это отличает альдегиды от других органических соединений, способных к окислению – спиртов, непредельных соединений, для окисления которых необходимы более сильные окислители. Следовательно, реакции окисления альдегидов комплексно связанными катионами ртути, меди, серебра в щелочной среде можно применять для доказательства подлинности альдегидов.

I. 1 .Реакция с аммиачным раствором нитрата серебра (реакция серебряного зеркала) рекомендуется ФС для подтверждения подлинности веществ с альдегидной группой.В основе окисление альдегида до кислоты и восстановление Ag + до Ag↓.

AgNO 3 + 2NH 4 OH → NO 3 +2H 2 O

НСОН + 2NO 3 + H 2 O → HCOONH 4 + 2Ag↓+ 2NH 4 NO 3 + NH 3

Формальдегид, окисляясь до аммонийной соли муравьиной кислоты, восстанавливает до металлического серебро, которое осаждается на стенках пробирки в виде блестящего налета «зеркала» или серого осадка.

I. 2. Реакция с реактивом Фелинга (комплексное соединение меди (II) с калий-натриевой солью винной кислоты). Альдегиды восстанавливают соединение меди (II) до оксида меди (I), образуется кирпично-красный осадок. Готовят перед употреблением).

реактив Феллинга 1 - раствор CuSO 4

реактив Феллинга 2 – щелочной раствор калий-натриевой соли винной кислоты

При смешавании 1:1 реактивов Феллинга 1 и 2 образуется синее комплексное соединение меди (II ) с калий-натриевой солью винной кислоты:

синее окрашивание

При добавлении альдегида и нагревании синее окрашивание реактива исчезает, образуется промежуточный продукт - желтый осадок гидроксида меди (I), сразу разлагающийся на красный осадок оксида меди (I) и воду.

2KNa +R - COH +2NaOH+ 2KOH→R - COONa +4KNaC 4 H 4 O 6 +2 CuOH +H 2 O

2 CuOH Cu 2 O + H 2 O

Желтый осадок кирпично-красный осадок

В учебниках иная общая схема реакции

I. 3. Реакция с реактивом Несслера (щелочной раствор тетрайодмеркурат (II) калия). Формальдегид восстанавливает ион ртути до металлической ртути – осадок темно-серого цвета.

R-COH + K 2 +3KOH → R-COOK + 4KI + Hg + 2H 2 O

Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3. Реакции окисления и восстановления.

Альдегиды и кетоны содержат карбонильную группу
С=О. Общая формула:

1. Методы получения.

2. Химические
свойства.

Альдегиды и кетоны – один из наиболее реакционноспособных классов
органических соединений. Их химические свойства определяются присутствием
карбонильной группы. Вследствие большого различия в электроотрицательностях
углерода и кислорода и высокой поляризуемости p -связи связь С=О обладает значительной полярностью
(
m С=О =2,5-2,8 D). Атом углерода карбонильной
группы несет эффективный положительный заряд и является объектом для атаки
нуклеофилов. Основной тип реакций альдегидов и кетонов – реакции
нуклеофильного присоединения Ad
N . Кроме того, карбонильная группа оказывает влияние на
реакционную способность связи С-Н в
a -положении, повышая ее кислотность.

Таким образом, молекулы альдегидов и кетонов
содержат два основных реакционных центра – связь С=О и связь С-Н в a -положении:

2.1. Реакции нуклеофильного
присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи.
Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем
образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и
дает продукт присоединения:

Активность карбонильных соединений в
Ad N –реакциях зависит от величины
эффективного положительного заряда на карбонильном атоме углерода и объема
заместителей у карбонильной группы. Электронодонорные и объемистые заместители
затрудняют реакцию, электроноакцепторные заместители повышают реакционную
способность карбонильного соединения. Поэтому альдегиды в
Ad
N –реакциях активнее, чем
кетоны.

Активность карбонильных соединений повышается в
присутствии кислотных катализаторов, которые увеличивают положительный заряд на
карбонильном атоме углерода:

Альдегиды и кетоны присоединяют воду, спирты,
тиолы, синильную кислоту, гидросульфит натрия, соединения типа
NH 2 X. Все реакции присоединения
идут быстро, в мягких условиях, однако образующиеся продукты, как правило,
термодинамически не устойчивы. Поэтому реакции протекают обратимо, и содержание
продуктов присоединения в равновесной смеси может быть низким.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с
образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты
термодинамически не стабильны. Равновесие смещено в сторону продуктов
присоединения только в случае активных карбонильных соединений.

Продукт гидратации трихлоруксусного альдегида
хлоральгидрат – устойчивое кристаллическое соединение, которое используется в
медицине как успокаивающее и снотворное средство.

Присоединение спиртов и
тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей . При избытке спирта и в присутствии кислотного катализатора
реакция идет дальше – до образования ацеталей

Реакция образования полуацеталя протекает как
нуклеофильное присоединение и ускоряется в присутствии кислот или
оснований.

Процесс образования ацеталя идет как
нуклеофильное замещение ОН группы в полуацетале и возможен только в условиях
кислотного катализа, когда группа ОН превращается в хорошую уходящую группу
(H 2 O).

Образование ацеталей – обратимый процесс. В
кислой среде полуацетали и ацетали легко гидролизуются. В щелочной среде
гидролиз не идет. Реакции образования и гидролиза ацеталей играют важную роль в
химии углеводов.

Кетоны в аналогичных условиях кеталей не
дают.

Тиолы как более сильные нуклеофилы, чем спирты,
образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной
кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях
основного катализа с образованием циангидринов.

Реакция имеет препаративное значение и
используется в синтезе a -гидрокси- и a -аминокислот (см. лек. № 14). Плоды некоторых растений
(например, горький миндаль) содержат циангидрины. Выделяющаяся при их
расщеплении синильная кислота оказывает отравляющее действие
.

Присоединение бисульфита
натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO 3 c образованием бисульфитных производных.

Бисульфитные производные карбонильных соединений
– кристаллические вещества, не растворимые в избытке раствора бисульфита натрия.
Реакция используется выделения карбонильных соединений из смесей. Карбонильное
соединение может быть легко регенерировано обработкой бисульфитного производного
кислотой или щелочью.

Взаимодействие с соединениями общей
формулы NH
2 X.

Реакции протекают по общей схеме как процесс
присоединения-отщепления. Образующийся на первой стадии продукт присоединения не
устойчив и легко отщепляет воду.

По приведенной схеме с карбонильными
соединениями реагируют аммиак, первичные амины, гидразин, замещенные гидразины,
гидроксиламин.

Образующиеся производные представляют собой
кристаллические вещества, которые используют для выделения и идентификации
карбонильных соединений.

Имины (основания Шиффа) являются промежуточными
продуктами во многих ферментативных процессах (трансаминирование под действием
кофермента пиридоксальфосфата; восстановительное аминирование кетокислот при
участии кофермента НАД Н). При каталитическом гидрировании иминов образуются
амины. Процесс используется для синтеза аминов из альдегидов и кетонов и
называется восстановительным аминированием.

Восстановительное аминирование протекает in vivo
в ходе синтеза аминокислот (см. лек. № 16)

2.2. Реакции по a -углеродному атому.

Кето-енольная таутомерия.

Водород в a -положении к карбонильной группе обладает кислотными
свойствами, так как образующийся при его отщеплении анион стабилизируется за
счет резонанса.

Результатом протонной подвижности атома водорода
в a -положении
является способность карбонильных соединений к образованию енольных форм за счет
миграции протона из
a -положения к атому кислорода карбонильной группы.

Кетон и енол являются таутомерами .
Таутомеры – это изомеры, способные быстро и обратимо превращаться друг в друга
за счет миграции какой-либо группы (в данном случае – протона). Равновесие между
кетоном и енолом называют кето-енольной таутомерией.

Процесс енолизации катализируется кислотами и
основаниями. Енолизация под действием основания может быть представлена
следующей схемой:

Большинство карбонильных соединений существуют
преимущественно в кетонной форме. Содержание енольной формы возрастает с
увеличением кислотности карбонильного соединения, а также в случае
дополнительной стабилизации енольной формы за счет водородной связи или за счет
сопряжения.

Таблица 8. Содержание енольных форм и
кислотность карбонильных соединений

Например, в 1,3-дикарбонильных соединениях
подвижность протонов метиленовой группы резко увеличивается за счет
электроноакцепторного влияния двух карбонильных групп. Кроме того, енольная
форма стабилизируется за счет наличия в ней системы сопряженных p -связей и внутримолекулярной
водородной связи.

Если соединение в енольной форме представляет
собой сопряженную систему с высокой энергией стабилизации, то енольная форма
преобладает. Например, фенол существует только в енольной форме.

Енолизация и образование енолят-анионов являются
первыми стадиями реакций карбонильных соединений, протекающих по a -углеродному атому. Важнейшими
из них являются галогенирование и альдольно-кротоновая
конденсация
.

Галогенирование.

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl 2 ,
Br 2 , I 2 ) с образованием
исключительно
a -галогенпроизводных.

Реакция катализируется кислотами или
основаниями. Скорость реакции не зависит от концентрации и природы галогена.
Процесс протекает через образование енольной формы (медленная стадия), которая
затем реагирует с галогеном (быстрая стадия). Таким образом, галоген не
участвует в скорость —определяющей стадии
процесса.

Если карбонильное соединение содержит несколько a -водородных
атомов, то замещение каждого последующего происходит быстрее, чем предыдущего,
вследствие увеличения их кислотности под действием электроноакцепторного влияния
галогена. В щелочной среде ацетальдегид и метилкетоны дают
тригалогенпроизводные, которые затем расщеплятся под действием избытка щелочи с
образованием тригалогенметанов (галоформная реакция)
.

Расщепление трииодацетона протекает как реакция
нуклеофильного замещения. группы CI 3 — гидроксид-анионом, подобно S N -реакциям в карбоксильной группе (см. лек. №12).

Иодоформ выпадает из реакционной смеси в виде
бледно-желтого кристаллического осадка с характерным запахом. Иодоформную
реакцию используют в аналитических целях для обнаружения соединений типа
СH 3 -CO-R, в том числе в
клинических лабораториях для диагностики сахарного диабета.

Реакции конденсации.

В присутствии каталитических количеств кислот
или щелочей карбонильные соединения, содержащие a -водородные атомы,
претерпевают конденсацию с образованием
b -гидроксикарбонильных соединений.

В образовании связи С-С участвуют карбонильный
атом углерода одной молекулы (карбонильной компоненты ) и a -углеродный атом другой
молекулы (метиленовой компоненты ). Эта реакция носит название альдольной конденсации (по названию продукта конденсации ацетальдегида –
альдоля).

При нагревании реакционной смеси продукт легко
дегидратируется с образованием a ,b -непредельного карбонильного
соединения.

Такой тип конденсации носит название кротоновой (по названию продукта конденсации ацетальдегида – кротонового
альдегида).

Рассмотрим механизм альдольной конденсации в
щелочной среде. На первой стадии гидроксид-анион отрывает протон из a -положения карбонильного
соединения с образованием енолят-аниона. Затем енолят анион как нуклеофил
атакует карбонильный атом углерода другой молекулы карбонильного соединения.
Образующийся тетраэдрический интермедиат (алкоксид-анион) является сильным
основанием и отрывает далее протон от молекулы воды.

При альдольной конденсации двух различных
карбонильных соединений (перекрестная альдольная конденсация) возможно
образование 4-х разных продуктов. Однако этого можно избежать, если одно из
карбонильных соединений не содержит a -водородных атомов (например, ароматические альдегиды
или формальдегид) и не может выступать в качестве метиленовой компоненты.

В качестве метиленовой компоненты в реакциях
конденсации могут выступать не только карбонильные соединения, но и другие
С-Н-кислоты. Реакции конденсации имеют препаративное значение, так как позволяют
наращивать цепь углеродных атомов. По типу альдольной конденсации и
ретроальдольного распада (обратный процесс) протекают многие биохимические
процессы: гликолиз, синтез лимонной кислоты в цикле Кребса, синтез нейраминовой
кислоты.

2.3. Реакции окисления и
восстановления

Восстановление

Карбонильные соединения восстанавливаются до
спиртов в результате каталитического гидрирования или под действием
восстановителей, которые являются донорами гидрид-анионов.

[H]: H 2 /кат., кат. – Ni, Pt,
Pd;

LiAlH 4 ; NaBH 4 .

Восстановление карбонильных соединений
комплексными гидридами металлов включает нуклеофильную атаку карбонильной группы
гидрид-анионом. При последующем гидролизе образуется спирт.

Аналогично происходит восстановление
карбонильной группы in vivo под действием кофермента НАД Н, который является
донором гидрид-иона (см. лек. №19).

Окисление

Альдегиды окисляются очень легко практически
любыми окислителями, даже такими слабыми, как кислород воздуха и соединения
серебра (I) и меди (II).

Две последние реакции используются как
качественные на альдегидную группу.

В присутствии щелочей альдегиды, не содержащие a -водородных атомов
диспропорционируют с образованием спирта и кислоты (реакция Канницаро).

2HCHO + NaOH ® HCOONa + CH 3 OH

Это является причиной того, что водный раствор
формальдегида (формалин) при длительном хранении приобретает кислую
реакцию.

Кетоны устойчивы к действию окислителей в
нейтральной среде. В кислой и щелочной средах под действием сильных
окислителей (KMnO 4 ) они
окисляются с разрывом связи С-С. Расщепление углеродного скелета происходит по
двойной углерод-углеродной связи енольных форм карбонильного соединения, подобно
окислению двойных связей в алкенах. При этом образуется смесь продуктов,
содержащая карбоновые кислоты или карбоновые кислоты и кетоны.

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола

Предельные одноатомные и многоатомные спирты

Спиртами (или алканолами) называются органические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп $—ОН$), соединенных с углеводородным радикалом.

По числу гидроксильных групп (атомности) спирты делятся на:

— одноатомные, например:

${CH_3-OH}↙{метанол(метиловый спирт)}$ ${CH_3-CH_2-OH}↙{этанол(этиловый спирт)}$

двухатомные (гликоли) , например:

${OH-CH_2-CH_2-OH}↙{этандиол-1,2(этиленгликоль)}$

${HO-CH_2-CH_2-CH_2-OH}↙{пропандиол-1,3}$

трехатомные , например:

По характеру углеводородного радикала выделяют следующие спирты:

предельные , содержащие в молекуле лишь предельные углеводородные радикалы, например:

непредельные , содержащие в молекуле кратные (двойные и тройные) связи между атомами углерода, например:

${CH_2=CH-CH_2-OH}↙{пропен-2-ол-1 (аллиловый спирт)}$

ароматические , т.е. спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества, содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений — фенолы. Например:

Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит):

Номенклатура и изомерия

При образовании названий спиртов к названию углеводорода, соответствующего спирту, добавляют родовой суффикс -ол. Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-, тетра- и т. д. — их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия — спирты изомерны простым эфирам:

${CH_3-CH_2-OH}↙{этанол}$ ${CH_3-O-CH_3}↙{диметиловый эфир}$

спиртов

Физические свойства.

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды.

Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы. Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения. Так, пропан с относительной молекулярной массой $44$ при обычных условиях является газом, а простейший из спиртов — метанол, имея относительную молекулярную массу $32$, в обычных условиях — жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов, содержащие от $1$ до $11$ атомов углерода, — жидкости. Высшие спирты (начиная с $С_{12}Н_{25}ОН$) при комнатной температуре — твердые вещества. Низшие спирты имеют характерный алкогольный запах и жгучий вкус, они хорошо растворимы в воде. По мере увеличения углеводородного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства.

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные радикалы, поэтому химические свойства спиртов определяются взаимодействием и влиянием друг на друга этих групп. Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал, с одной стороны, и вещества, содержащего гидроксильную группу и не содержащего углеводородный радикал, — с другой. Такими веществами могут быть, например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами (замещаться на них):

$2Na+2H_2O=2NaOH+H_2$,

$2Na+2C_2H_5OH=2C_2H_5ONa+H_2$,

$2Na+2ROH=2RONa+H_2$.

2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:

$C_2H_5OH+HBr⇄C_2H_5Br+H_2O$.

Данная реакция обратима.

3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств:

В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от $100$ до $140°С$ образуется диэтиловый (серный) эфир:

4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров (реакция этерификации ):

Реакция этерификации катализируется сильными неорганическими кислотами.

Например, при взаимодействии этилового спирта и уксусной кислоты образуется уксусноэтиловый эфир — этилацетат :

5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры, чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше $140°С$ в присутствии концентрированной серной кислоты:

6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом калия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидроксильной группой. В зависимости от природы спирта и условий проведения реакции могут образовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды , а затем в карбоновые кислоты:

При окислении вторичных спиртов образуются кетоны:

Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближайших к гидроксильной группе.

7. Дегидрирование спиртов. При пропускании паров спирта при $200-300°С$ над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в альдегиды, а вторичные — в кетоны:

Присутствием в молекуле спирта одновременно нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов , которые способны образовывать растворимые в воде ярко-синие комплексные соединения при взаимодействии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качественной реакцией на многоатомные спирты.

Фенол

Строение фенолов

Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства, вещества будут существенно отличаться друг от друга из-за взаимного влияния групп атомов. И действительно, органические соединения, содержащие ароматический радикал фенил $С_6Н_5$—, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называются фенолами.

Фенолы — органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксогруппами.

Так же как и спирты, фенолы классифицируют по атомности, т.е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и другие многоатомные фенолы, содержащие три и более гидроксильные группы в бензольном кольце.

Познакомимся подробнее со строением и свойствами простейшего представителя этого класса — фенолом $С_6Н_5ОН$. Название этого вещества и легло в основу названия всего класса — фенолы.

Физические и химические свойства.

Физические свойства.

Фенол — твердое, бесцветное, кристаллическое вещество, $t°_{пл.}=43°С, t°_{кип.}=181°С$, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно!

Химические свойства.

Кислотные свойства. Как уже было сказано, атом водорода гидроксильной группы обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды, фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов :

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в $3000$ раз слабее, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:

Качественная реакция на фенол.

Фенол реагирует с хлоридом железа (III) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа (III).

Реакции бензольного кольца.

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола. В отличие от бензола, для бромирования фенола не требуется добавления катализатора (бромида железа (III)).

Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и параположения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же, как и реакция с хлоридом железа (III), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара- изомеров нитрофенола:

При использовании концентрированной азотной кислоты образуется взрывчатое вещество — 2,4,6-тринитрофенол (пикриновая кислота):

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко:

4. Поликонденсация фенола с альдегидами , в частности с формальдегидом, происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсации, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде. В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, обладающих высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам понятно, почему фенол и продукты на его основе находят широкое применение.

Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров

Альдегиды и кетоны

Альдегиды — органические вещества, молекулы которых содержат карбонильную группу , соединенную с атомом водорода и углеводородным радикалом.

Общая формула альдегидов имеет вид:

В простейшем альдегиде — формальдегиде — роль углеводородного радикала играет второй атом водорода:

Карбонильную группу, связанную с атомом водорода, называют альдегидной:

Органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами, называют кетонами.

Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой.

В простейшем кетоне — ацетоне — карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия

В зависимости от строения углеводородного радикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. По этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов — также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Тривиальные названия и температуры кипения некоторых альдегидов.

Физические и химические свойства

Физические свойства.

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислорода по сравнению с углеродным атомом связь $С=О$ сильно поляризована за счет смещения электронной плотности $π$-связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов, в отличие от спиртов, нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

Реакции восстановления.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2:

Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты. Схематично этот процесс можно представить так:

Из пропионового альдегида (пропаналя), например, образуется пропионовая кислота:

Альдегиды окисляются даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор оксида серебра. В упрощенном виде этот процесс можно выразить уравнением реакции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала» . Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

Окислителем альдегидов может выступать и свежеосажденный гидроксид меди (II). Окисляя альдегид, $Cu^{2+}$ восстанавливается до $Cu^+$. Образующийся в ходе реакции гидроксид меди (I) $CuOH$ сразу разлагается на оксид меди (I) красного цвета и воду:

Эта реакция, так же, как и реакция «серебряного зеркала», используется для обнаружения альдегидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид $HCHO$) — бесцветный газ с резким запахом и температурой кипения $-21С°$, хорошо растворим в воде. Формальдегид ядовит! Раствор формальдегида в воде ($40%$) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевенной промышленности — для обработки кож. Формальдегид используют для получения уротропина — лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид $CH_3CHO$) — жидкость с резким неприятным запахом и температурой кипения $21°С$, хорошо растворим в воде. Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс и ацетатного волокна. Уксусный альдегид ядовит!

Карбоновые кислоты

Вещества, содержащие в молекуле одну или несколько карбоксильных групп, называются карбоновыми кислотами.

Группа атомов называется карбоксильной группой , или карбоксилом.

Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными.

Общая формула этих кислот $RCOOH$, например:

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты:

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат $π$-связей в углеводородном радикале. В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например, в молекулах акриловой (пропеновой) $СН_2=СН—СООН$ или олеиновой $СН_3—(СН_2)_7—СН=СН—(СН_2)_7—СООН$ и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо:

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, уже рассматривались. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов- , окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия.

Названия карбоновых кислот.

Химическая формула Систематическое название кислоты Тривиальное название кислоты
$Н—СООН$ Метановая Муравьиная
$СН_3—СООН$ Этановая Уксусная
$СН_3—СН_2—СООН$ Пропановая Пропионовая
$СН_3—СН_2—СН_2—СООН$ Бутановая Масляная
$СН_3—СН_2—СН_2—СН_2—СООН$ Пентановая Валериановая
$СН_3—(СН_2)_4—СООН$ Гексановая Капроновая
$СН_3—(СН_2)_5—СООН$ Гептановая Энантовая
$НООС—СООН$ Этандиовая Щавелевая
$НООС—СН_2—СООН$ Пропандиовая Малоновая
$НООС—СН_2—СН_2—СООН$ Бутандиовая Янтарная

После знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот выражается общей формулой $С_nН_{2n}О_2$, или $С_nН_{2n+1}СООН$, или $RCOOH$.

Физические и химические свойства

Физические свойства.

Низшие кислоты, т.е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, — жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от $4$ до $9$ атомов углерода, — вязкие маслянистые жидкости с неприятным запахом; содержащие более $9$ атомов углерода в молекуле — твердые вещества, не растворяющиеся в воде. Температуры кипения предельных одноосновных карбоновых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна $100.8°С$, уксусной — $118°С$, пропионовой — $141°С$.

Простейшая карбоновая кислота — муравьиная $НСООН$, имея небольшую относительную молекулярную массу $(M_r(HCOOH)=46)$, при обычных условиях является жидкостью с температурой кипения $100.8°С$. В то же время бутан $(M_r(C_4H_{10})=58)$ в тех же условиях газообразен и имеет температуру кипения $-0,5°С$. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями:

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов — карбоксил и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Химические свойства.

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атомами водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка:

$CH_3-COOH⇄CH_3-COO^{-}+H^+$

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

$CH_3-COOH+H_2O⇄CH_3COO^{-}+H_3O^+$

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их — слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т.е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водорода: $nR-COOH+M→(RCOO)_{n}M+{n}/{2}H_2$

Так, железо восстанавливает водород из уксусной кислоты:

$2CH_3-COOH+Fe→(CH_3COO)_{2}Fe+H_2$

3. Взаимодействие с основными оксидами с образованием соли и воды:

$2R-COOH+CaO→(R-COO)_{2}Ca+H_2O$

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

$R—COOH+NaOH→R—COONa+H_2O$,

$2R—COOH+Ca(OH)_2→(R—COO)_{2}Ca+2H_2O$.

5. Взаимодействие с солями более слабых кислот с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

$CH_3COOH+C_{17}H_{35}COONa→CH_3COONa+C_{17}H_{35}COOH↓$,

$2CH_3COOH+K_2CO_3→2CH_3COOK+H_2O+CO_2$.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров — реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кислотами, т.е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи — в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода — гидрирование . Для кислоты, содержащей в радикале одну $π$-связь, можно записать уравнение в общем виде:

$C_{n}H_{2n-1}COOH+H_2{→}↖{катализатор}C_{n}H_{2n+1}COOH.$

Так, при гидрировании олеиновой кислоты образуется предельная стеариновая кислота:

${C_{17}H_{33}COOH+H_2}↙{\text"олеиновая кислота"}{→}↖{катализатор}{C_{17}H_{35}COOH}↙{\text"стеариновая кислота"}$

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду:

${CH_2=CH—COOH+Br_2}↙{\text"акриловая(пропеновая)кислота"}→{CH_2Br—CHBr—COOH}↙{\text"2,3-дибромпропановая кислота"}.$

8. Реакции замещения (с галогенами) — в них способны вступать предельные карбоновые кислоты. Например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:

$CH_3COOH+Cl_2{→}↖{Р(красный)}{CH_2Cl-COOH+HCl}↙{\text"хлоруксусная кислота"}$,

$CH_2Cl-COOH+Cl_2{→}↖{Р(красный)}{CHCl_2-COOH+HCl}↙{\text"дихлоруксусная кислота"}$,

$CHCl_2-COOH+Cl_2{→}↖{Р(красный)}{CCl_3-COOH+HCl}↙{\text"трихлоруксусная кислота"}$

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота ХЦООХ — жидкость с резким запахом и температурой кипения $100.8°С$, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она используется при крашении тканей и бумаги.

Уксусная (этановая) кислота $CH_3COOH$ — бесцветная жидкость с характерным резким запахом, смешивается с водой в любых cоотношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса ($3-5%$-ный раствор) и уксусной эссенции ($70-80%$-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота — хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, — гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она — продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая $C_{15}H_{31}COOH$ и стеариновая $C_{17}H_{35}COOH$ кислоты. В отличие от низших кислот, эти вещества твердые, плохо растворимы в воде.

Однако их соли — стеараты и пальмитаты — хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах. Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота $C_{17}H_{33}COOH$, или $CH_3 — (CH_2)_7 — CH=CH —(CH_2)_7COOH$. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота $HOOC—COOH$, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота — это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

Сложные эфиры

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Жиры — производные соединения, которые представляют собой сложные эфиры глицерина и высших карбоновых кислот.

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

При проведении гидролиза жира в щелочной среде $(NaOH)$ и в присутствии кальцинированной соды $Na_2CO_3$ он протекает необратимо и приводит к образованию не карбоновых кислот, а их солей, которые называются мылами. Поэтому гидролиз жиров в щелочной среде называются омылением.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегидами и кетонами называют производные углеводородов, содер­жащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соедине­ние с атомом водорода, а другая - с радикалом (предельного ряда в пре­дельных альдегидах и непредельного - в непредельных альдегидах). Об­щая формула альдегидов:

причем R может быть равно Н.

В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:

Изомерия. Номенклатура.

Общая формула предельных альдегидов и кетонов С n Н 2 n O.

Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой

(см. ниже).

Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным угле­водородам с добавлением суффикса -аль (систематическая номенклатура).

муравьиный альдегид (формальдегид), метаналь (рис. 1а )
уксусный альдегид, этаналь (рис. 1б )
пропионовый альдегид, пропаналь
СН 3 -СН 2 -СН 2 -СНО масляный альдегид, бутаналь
изомасляный альдегид, 2-метилпропаналь
СН 3 -СН 2 -СН 2 -СН 2 -СНО валериановый альдегид, пентаналь
изовалернановый альдегид, 3-метилбутаналь
метилэтилуксусный альдегид, 2-метилбутаналь
триметилуксусный альдегид, 2,2-диметлпропаналь


Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наимено­ванию радикалов, связанных с карбонильной группой. По систематичес­кой номенклатуре к названию предельного углеводорода добавляется суф­фикс -он и указывается номер атома углерода, связанного с карбониль­ным кислородом:

Способы получения

Альдегиды и кетоны получают рядом общих методов.

1. Окислением или каталитическим дегидрированием первичных спир­тов получают альдегиды, вторичных - кетоны. Эти реакции уже приво­дились при рассмотрении химических свойств спиртов.

2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:



R - СООН + Н-СООН→R-СНО + СО 2 + Н 2 0

2R-СООН→R -СО -R + C0 2 + Н 2 0

R-СООН + R" - СООН → R - СО-R’+С0 2 + Н 2 0

Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пироли­зом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей ба­риевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.

3. Гидролиз геминальных дигалогенопроизводных приводит к альдеги­дам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов угле­рода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.

4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:

НС≡СН + Н 2 O→ СН 3 -СНО

5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.

RCH 2 OH + (CH 3) 2 SO→ RCH = О + (CH 3) 2 S

6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:

R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О

Имеется несколько модификаций этого метода.

7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кис­лот с литийдиалкилкупратамн и кадмийалкилами:

R 2 CuLi + R"COCI→R - СО - R"+LiCI + R - Сu

8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализато­ров (например, Со + ThO 2 + MgO, нанесенные на кизельгур):

Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе полу­чаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:

2Со + 8СО→ Со 2 (СО) 8

Cо 2 (CO)8 + H 2 → 2НСо(СО) 4

R -СН=СН 2 + НСо(СО) 4 → R - СН 2 -СН 2 - Со(СО) 4

R - СН 2 -СН 2 -Со(СО) 4 +СО→ R-СН 2 -СН 2 -СО - Со(СО) 4

R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 →R-СН 2 -СН 2 -СНО + Со(СО) 8

Физические свойства

Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие аль­дегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут доволь­но приятно.

При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоцииро­ванными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плот­ность альдегидов и кетонов ниже единицы.

В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы на­ходится в очень слабом поле.

Химические свойства

Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбониль­ной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электро­отрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома уг­лерода. Дипольный момент карбонильной груп­пы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответ­ственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризо­ванная часть присоединяющейся молекулы всегда на­правляется к углеродному атому карбонильной груп­пы, в то время как ее положительно поляризованная часть направляется к кислородному атому.

Реакция присоединения нуклеофильных реагентов по месту карбо­нильной связи - ступенчатый процесс. Схематически реакцию присо­единения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:

Радикалы, способные увеличивать положительный заряд на атоме уг­лерода карбонильной группы, сильно повышают реакционную способ­ность альдегидов и кетонов; радикалы или атомы, уменьшающие положи­тельный заряд на этом углеродном атоме, оказывают противоположное действие.

Помимо реакций присоединения по карбонильной группе для альдеги­дов и кетонов характерны также реакции с участием соседних с карбо­нильной группой углеродных радикалов, обусловленные электроноакцеп­торным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.

А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вто­ричные спирты. На этом основан один из методов получения спиртов.

В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:

Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не вос­станавливает двойные углерод-углеродные связи.

При восстановлении альдегидов или кетонов водородом в момент выде­ления (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:

пинакон

Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При вос­становлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.

Реакция протекает с промежу­точным образованием свободных радикалов:

Б. Реакции нуклеофильного присоединения.

1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.

2. Присоединение синильной кислоты приводит к образованию α-оксинитрилов, омылением которых получают α-гидроксикислоты:

нитрил α-гидроксипропионовой кислоты

Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Циани­стый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при обра­зовании циангидрина является ион CN - :

3. Присоединение гидросульфита натрия дает кристаллические веще­ства, обычно называемые гидросульфитными производными альдегидов или кетонов:

При нагревании с раствором соды или минеральных кислот гидросуль­фитные производные разлагаются с выделением свободного альдегида или кетона, например:

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жир­ном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .

4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:

ацетальдимин, этаними н

которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:

альдегидаммиа к

При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:

5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):

ацетальдоксим

ацетоноксим

Эти реакции применяют для количественного определения карбониль­ных соединений.

Механизм реакции (R=H или Alk):

6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):

гидразон

альдазин

кетазин

Гидразоны кетонов и альдегидов при нагревании с твердым КОН выде­ляют азот и дают предельные углеводороды (реакция Кижнера):

В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гид­разином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.

Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.

Образование фенилгидразонов:

Семикарбазоны образуются по схеме:

Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:

Для этих реакций характерен кислотный катализ.

7. Альдегиды и кетоны способны присоединять по карбонильной груп­пе воду с образованием гидратов - геминальных гликолей. Эти соедине­ния во многих случаях существуют только в растворах. Положение равно­весия зависит от строения карбонилсодержащего соединения:

Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кри­сталлические гидраты.

Альдегиды с более высокой молекулярной массой образуют с водой устойчи­вые при низких температурах твердые полугидраты:

8.

В присутствии следов минеральной кислоты образуются ацетали:

Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвер­гаются гидролизу с образованием спиртов и выделением альдегидов:

Ацеталь, полученный из масляного альдегида и поливинилового спир­та, используется в качестве клея при изготовлении безосколочных стекол.

Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кис­лоты:

9. При действии на альдегиды спиртов образуются полуацетали:

Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:

Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:

В. Реакции окисления. Окисление альдегидов идет значительно лег­че, чем кетонов. Кроме того, окисление альдегидов приводит к образова­нию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.

Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:

Аммиачный раствор гидроксида серебра OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности - образуется сереб­ряное зеркало:

Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.

Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной рас­твор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:

Красная окись меди Cu 2 О почти количественно выпадает в осадок. Ре­акция эта с кетонами не идет.

Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат ка­лия, по ионному механизму, причем первой стадией процесса обычно яв­ляется присоединение окислителя по СО-группе.

Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.

По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.

Г. Реакции полимеризации. Эти реакции характерны только для аль­дегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):

Механизм полимеризации может быть представлен в следующем виде:

Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Ре­акции ускоряются как кислотами, так и основаниями.

Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:

Е. Реакции конденсации.

1. Альдегиды в слабоосновной среде (в при­сутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли об­разуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в α-положении к кар­бонилу, как это показано на примере уксусного альдегида:

альдоль

В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбо­нилу, так как только водородные атомы этой группы в достаточной степе­ни активируются карбонильной группой:

3-гидрокси-2-метилпентаналь

Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.

Механизм реакции альдольной конденсации, катализируемой основа­ниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:

Поэтому переход от предельного альдегида к непредельному через аль­доль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.

При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не спо­собные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:

2(СН 3) 3 С-СНО +КОН→(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.

Альдольная конденсация кетонов происходит в более жестких услови­ях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:

В еще более жестких условиях, например при нагревании с концентри­рованной серной кислотой, кетоны подвергаются межмолекулярной де­гидратации с образованием непредельных кетонов:

окись мезитила

Окись мезитила может реагировать с новой молекулой ацетона:

форон

Возможна и конденсация между альдегидами и кетонами, например:

3-пентен-2-он

Во всех этих реакциях вначале идет альдольная конденсация, а затем де­гидратация образовавшегося гидроксикетона.

2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).

уксусноэтиловый эфир

Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:

R-СНО + [(C 6 H 5) 3 P] 3 PhCl→ R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.

При изучении химических превращений альдегидов и кетонов необхо­димо обратить внимание на существенные различия между ними. Альде­гиды легко окисляются без изменения углеродной цепи (реакция серебря­ного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.

Отдельные представители. Применение

Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражаю­ще на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - непол­ным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над сереб­ряным катализатором):

СН 3 ОН→ Н 2 +Н 2 СО.

Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.

1. В щелочной среде он претерпевает реакцию окисления - восста­новления (реакция Канниццаро):

2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впер­вые А. М. Бутлеровым:

6Н 2 С=О + 4NH 3 → 6H 2 0 + (CH 2) 6 N 4

уротропин

Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого ни­трованием уротропина)

гексаген

в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).

3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвер­гается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:

гексоза

В присутствии щелочей формальдегид может конденсироваться и с дру­гими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4

СН 3 СНО + 3Н 2 СО → (НОСН 2) 3 ССНО

(НОСН 2) 3 ССНО + Н 2 СО → (НОСН 2) 4 С + НСОО -

Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .

4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.

5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленно­сти. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.

6. Продуктом конденсации формальдегида с изобутиленом (в присут­ствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагрева­нии до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разла­гается с образованием изопрена.

Формалин широко применяется в качестве дезинфицирующего веще­ства для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.

Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздра­жение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.

Промышленные методы получения ацетальдегида уже были рассмот­рены: гидратация ацетилена, дегидрирование этилового спирта, изомери­зация окиси этилена, каталитическое окисление воздухом предельных углеводородов.

В последнее время ацетальдегид получают окислением этилена кисло­родом воздуха в присутствии катализатора по схеме:

CH 2 =CH 2 +H 2 O +PdCl 2 →CH 3 -СНО + 2HCl + Pd

Pd + 2CuC1 2 → 2CuCl + PdCl 2

2CuCl + 2HCI + 1 / 2 O 2 → 2CuCI 2 + H 2 O

2CH 2 = CH 2 + O 2 →2CH 3 CHO

Другие 1-алкены образуют в этой реакции метилкетоны.

Из ацетальдегида в промышленных масштабах получают уксусную кис­лоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.

Подобно формальдегиду, он конденсируется с фенолом, аминами и дру­гими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.

Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количе­ства последнего возрастают с понижением температуры (до -10 °С):

Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристал­лическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака по­лучают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.

Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлориро­ванием этилового спирта.

Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:

Обладает снотворным действием. Конденсацией хлораля с хлорбензо­лом получают в промышленных масштабах инсектициды.

При действии на хлораль щелочей образуется хлороформ:

Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органиче­ских растворителях.

Ацетон получают:

1) из изопропилового спирта - окислением или дегидрированием;

2) окислением изопропилбензола, получаемого алкилированием бен­зола, наряду с фенолом;

3) ацетон-бутанольным брожением углеводов.

Ацетон в качестве растворителя применяется в больших количе­ствах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при произ­водстве небьющегося органического стекла, кетена и т. д.

Лучшие статьи по теме