Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

Технология конструкционных материалов (ткм). Сплавы

Как вы уже знаете, у бронзы, например, прочность выше, чем у составляющих ее меди и олова. Сталь и чугун прочнее технически чистого железа. Поэтому в чистом виде металлы используют редко. Значительно чаще применяются их сплавы. Известно немногим более 80 металлов, но из них получены десятки тысяч различных сплавов.

Помимо большей прочности многие сплавы обладают большей коррозионной стойкостью и твердостью, лучшими литейными свойствами, чем чистые металлы. Так, чистая медь очень плохо поддается литью, из нее трудно получить отливки, и в то же время оловянная бронза - сплав Си + Бп имеет прекрасные литейные свойства: из нее отливают художественные изделия, требующие тонкой проработки деталей. Чугун - сплав железа с углеродом - также великолепный литейный материал. Чистый алюминий - очень мягкий металл, сравнительно непрочный на разрыв. Но сплав, состоящий из А1, М£, Мп, Си, №, называемый дюралюминием, в четыре раза прочнее алюминия на разрыв.

Помимо более высоких механических качеств сплавам присущи свойства, которых нет у чистых металлов. Примерами могут служить получаемая на основе железа нержавеющая сталь - материал с высокой коррозионной стойкостью даже в агрессивных средах и с высокой жаропрочностью, магнитные материалы, сплавы с высоким электрическим сопротивлением, с малым коэффициентом термического расширения.

Сплавы - это материалы с характерными свойствами, состоящие из двух или более компонентов, из которых по крайней мере один - металл.

Компонентами сплавов могут быть и неметаллы, и соединения.

По состоянию компонентов сплавы могут быть однородными, когда при сплавлении образуется как бы раствор одного металла в другом, например сплавы меди и олова, золота и серебра, и неоднородными, представляющими собой механическую смесь металлов.

Сплавы классифицируются по-разному, в зависимости от того, какой признак взят за основу. Чаще всего сплавы подразделяют по составу : медные, алюминиевые, никелевые, титановые и т. д.

Есть группы сплавов, носящие общие названия: бронзы, латуни и др. Иногда в названии сплава отмечают особо ценные компоненты: бериллиевые бронзы, вольфрамовая сталь и др.

В металлургии железо и все его сплавы выделяют в одну группу под названием черные металлы; остальные металлы и их сплавы имеют техническое название цветные металлы .

Подавляющее большинство железных (или черных) сплавов содержит углерод. Их разделяют на чутуны и стали.

Чугун - сплав на основе железа, содержащий от 2 до 4,5% углерода, а также марганец, кремний, фосфор и серу. Чугун значительно тверже железа, обычно он очень хрупкий, не куется, а при ударе разбивается. Этот сплав применяется для изготовления различных массивных деталей методом литья, так называемый литейный чугун и для переработки в сталь - передельный чугун.

В зависимости от состояния углерода в сплаве различают серый и белый чугун (табл. 4).

Вид
Состав
Свойства
Применение
Серый чугун
Содержит 1,7-4,3% С, 1,25-4,0% и до 1,5% Мn. Из-за большого содержания кремния снижается растворимость углерода, поэтому углерод находится в свободном состоянии в виде графита
Сравнительно мягкий и поддающийся механической обработке материал. Свободный углерод придает чугуну мягкость Производство литых деталей (шестерни, колеса, трубы И т. д.)
Белый чугун
Содержит 1,7-4,3% С, более 4% Мn, но очень мало кремния. Углерод в основном содержится в виде цементита - карбида железа Fе3 С
Твердый и хрупкий материал. Эти свойства придает цементит, который обладает большой твердостью
Переработка в сталь

Сталь - сплав на основе железа, содержащий менее 2% углерода. По химическому составу стали разделяют на два основных вида: углеродистая и легированная.

Углеродистая сталь представляет собой сплав железа главным образом с углеродом, но, в отличие от чугуна, содержание в ней углерода, а также Мn, Si, Р и S гораздо меньше. В зависимости от количества углерода стали подразделяют на мягкие (содержание углерода не превышает 0,3%), средней твердости (углерода несколько больше, чем в мягких) и твердые (углерода может быть до 2%). Из мягкой и средней твердости стали делают детали машин, трубы, болты, гвозди, скрепки и т. д., а из твердой - различные инструменты.

Легированная сталь - это тоже сплав железа с углеродом , только в него введены еще специальные, легирующие добавки: хром, никель, вольфрам, молибден, ванадий и др.

Легирующие добавки придают сплаву особые качества. Так, хромоникелевые стали очень пластичные, прочные, жаростойкие, кислотоупорные, устойчивые против коррозии (ржавления). Они применяются в строительстве (например, облицовка колонн станции «Маяковская» московского метро выполнена из хромоникелевой стали), а также для изготовления нержавеющих предметов домашнего обихода (ножей, вилок, ложек), всевозможных медицинских и других инструментов. Хромо-молибденовые и хромованадиевые стали очень твердые, прочные и жаростойкие. Они используются для изготовления трубопроводов, компрессоров, двигателей и многих других деталей машин современной техники. Хромовольфрамовые стали сохраняют большую твердость при очень высоких температурах. Они служат конструкционным материалом для быстрорежущих инструментов.

Некоторые легированные стали представлены в таблице 5.

Свойства некоторых легированных сталей и их применение

Марганец
Твердость, механическая прочность, устойчивость к ударам и трению
Детали дробильных установок, железнодорожные рельсы, зубья ковшей экскаваторов
Титан
Жаростойкость, механическая прочность при высоких температурах, коррозионная стойкость
В самолето-, ракето- и судостроении. Химическая аппаратура
Вольфрам
Твердость и

жаропрочность,

износоустойчивость

Быстрорежущие инструменты, пилы, фрезы, штампы, нити электрических ламп
Молибден
Эластичность, жаростойкость, коррозионная стойкость
Лопасти турбин реактивных самолетов и автомобилей, броневые плиты, лабораторная посуда, детали электронных ламп
Кремний
Устойчивость к воздействию кислот
Трансформаторы, кислотоупорные аппараты и приборы
Ванадий
Высокая прочность, упругость и устойчивость к ударам

1. Сплавы и их классификация.

2. Черные металлы: чугуны и стали.

3. Цветные металлы: бронза, латунь, мельхиор, дюралюминий.

Какой период в истории человечества называют «бронзовым веком»? Почему?

Какое количество вещества меди и никеля нужно взять для производства 25 кг мельхиора?

Что объединяет два выражения: «легирующие элементы стали» и «привилегированное положение в обществе»?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Министерство образования и науки Украины

Донбасский государственный технический университет

Институт повышения квалификации

КОНТРОЛЬНАЯ РАБОТА

по Металловедению

«Классификация металлов»

Алчевск 2009


1. Металлы

Металлическое состояние объясняется электронным строением. Элементы металла, вступая в химическую реакцию с элементами, являющимися неметаллами, отдают им свои внешние, так называемые валентные электроны. Это является следствием того, что у металлов внешние электроны непрочно связаны с ядром; кроме того, на наружных электронных оболочках немного (всего 1–2), тогда как у неметаллов электронов много (5–8).

Все элементы, расположенные левее галлииндия и таллия – металлы, а правее мышьяка, сурьмы и висмута – неметаллы.

В технике под неметаллом понимают вещества, обладающие «металлическим блеском» и пластичностью – характерные свойства.

Кроме этого все металлы обладают высокой электропроводностью и теплопроводностью.

Особенность строения металлических веществ заключается в том, что все они построены в основном из легких атомов, у которых внешние электроны слабо связаны с ядром. Это обуславливает особый характер взаимодействия атомов металла и металлические свойства. Металлы являются хорошими проводниками электрического тока.

Из известных (к 1985 г.) 106 химических элементов 83 – металлы.

2. Классификация металлов

Каждый металл отличается строением и свойствами от другого, тем не менее, по некоторым признакам их можно объединить в группы.

Данная классификация разработана русским ученым Гуляевым А.П. и может не совпадать с общепринятой.

Все металлы можно разделить на две большие группы – черные и цветные металлы.

Черные металлы чаще всего имеют темно-серый цвет, большую плотность (кроме щелочно-земельных), высокую температуру плавления, относительно высокую твердость. Наиболее типичным металлом этой группы является железо.

Цветные металлы чаще всего имеют характерную окраску: красную, желтую и белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления. Наиболее типичным элементом этой группы является медь.

Черные металлы в свою очередь можно подразделить следующим образом:

1. Железные металлы – железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Co, Ni, Mu часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.

2. Тугоплавкие металлы , температура плавления которых выше, чем железа (т.е. выше 1539С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов. К ним относят: Ti, V, Cr, Zr, Nb, Mo, Tc (технеций), Hf (гафий), Ta(тантал), W, Re (рений).

3. Урановые металлы – актиниды, имеющие преимущественное применение в сплавах для атомной энергетики. К ним относят: Ас(актиний), Th(торий), U(уран), Np(нептуний), Pu(плутоний), Bk(берклий), Cf (калифорний), Md(менделевий), No(нобелий) и др.

4. Редкоземельные металлы (РЗМ) – La(лантан), Ce(церий), Nd(неодим), Sm(санарий), Eu(европий), Dy(диспрозий), Lu(лютеций), Y(иттрий), Sc(сландий) и др., объединяемые под названием лантаноидов. Эти металлы обладают весьма близкими химическими свойствами, но довольно различными физическими (Тип. и др.). Их применяют как присадки к сплавам других элементов. В природных условиях они встречаются вместе и трудно разделимы на отдельные элементы. Обычно используется смешанный сплав – 40–45% Се (церий) и 40–45% всех других РЗМ.

5. Щелочноземельные металлы – в свободном металлическом состоянии не применяются, за исключением особых случаев, например, теплоносители в атомных реакторах. Li(литий), Na, K(калий), Rb(рубидий), Cs(цезий), Fr(франций), Ca(кальций), Sr(стронций), Ba(барий), Ra(радий).

Цветные металлы подразделяются на:

1. Легкие металлы – Ве(берилий), Mg(магний), Al(аллюминий), обладающие малой плотностью.

2. Благородные металлы – Ag(серебро), Pt(платина), Au(золото), Pd(палладий), Os(осмий), Ir(иридий), и др. Сu – полублагородный металл. Обладают высокой устойчивостью против коррозии.

3. Легкоплавкие металлы – Zn(цинк), Cd(кадмий), Hg(ртуть), Sn(олово), Bi(висмут), Sb(сурьма), Pb(свинец), As(мышьяк), In(индий) и т.д., и элементы с ослабленными металлическими свойствами – Ga(галий), Ge(германий).

Применение металлов началось с меди, серебра и золота. Так как они встречаются в природе в чистом (самородном) виде.

Позднее стали восстанавливать металлы из руд – Sn, Pb, Fe и др.

Наибольшее распространение в технике получили сплавы железа с углеродом: сталь (0,025–2,14% С) чугун (2,14–6,76% С); причина широкого использования Fe-C сплавов связано с рядом причин: малой стоимостью, наилучшими механическими свойствами, возможностью массового изготовления и большой распространенностью руд Fe в природе.

Более 90% изготовленных металлов составляет сталь.

Производство металлов на 1980 г.:

Железо – 718 000 тыс. тонн (в СССР до 150 млн тонн в год)

Марганец – > 10 000 тыс. тонн

Алюминий – 17 000 тыс. тонн

Медь – 9 400 тыс. тонн

Цинк – 6200 тыс. тонн

Олово – 5400 тыс. тонн

Никель – 760 тыс. тонн

Магний – 370 тыс. тонн

Золото – > 1,2 тыс. тонн

Стоимость металла – фактор возможности и целесообразности его применения. В таблице показана относительная стоимость разных металлов (за единицу принята стоимость железа, точнее простой углеродистой стали).

Благородные металлы:

Au, Ag, Pt и их сплавы.

Свое название получили из-за высокой коррозионной стойкости. Эти металлы пластичны. Имеют высокую стоимость.

Применяют в ювелирном и зубоврачебном деле. Чистое золото из-за его мягкости не применяют. Для повышения твердости золото легируют (добавляют другие элементы). Обычно используются тройные сплавы: Au – Ag – Cu.

Наиболее распространенными являются сплавы 375, 583, 750 и 916-й проб – это значит, что в этих сплавах на 1000 г. сплава приходится 375, 583, 750 и 916 г. золота, а остальное – медь, серебро, соотношение которых может быть различным.

Сплавы 916-й пробы наиболее мягкие, но и наиболее коррозионостойкие. С уменьшением индекса пробы коррозионная стойкость уменьшается.

Наибольшей твердостью (следовательно износостойкостью) обладают сплавы 583-й пробы, при соотношении Cu и Ag около 1:1.

Сплавы указанных проб имеют цвет золота.

Индийский булат

Конец IV века до н.э., войска Александра Македонского впервые встретились с необыкновенной индейской сталью при походе через Месопотамию (Ирак) и Афганистан в Индию.

«Чакра» – тяжелое плоское стальное кольцо заточено как лезвие, раскручивалось на двух пальцах, и швырялось во врага. Вращалось со страшной скоростью и срезало головы македонцев как головы цветов.

Параметры меча:

длина – 80–100 см

ширина у перекрестья – 5–6 см

толщина – 4 мм

вес – 1,2–1,8 кг

Свойства клинков:

Высокая твердость, прочность и при этом одновременно большая упругость и вязкость. Клинки свободно перерубали гвозди и при этом легко сгибались в дугу. Легко перерезали газовые легкие платки.

При оценке качества булатного оружия большую роль играл рисунок на клинке. В узоре имели значение форма, величина и цвет основного металла (фона).

По форме рисунок подразделяется на полосатый, струйчатый, волнистый, сетчатый и коленчатый. Наиболее высоко ценился коленчатый булат.

Испытывали булатный клинок и на упругость: его клали на голову, после чего оба конца притягивали к ушам и отпускали. После этого остаточной деформации не наблюдалось.

Настоящий булат изготавливался ковкой из литой стали, имеющей естественные узоры.

Сварочный булат (подделка) – получали проковкой скрученных в канат кусков проволоки с разным содержанием углерода и потому разную твердость. После травления появлялся рисунок.

Также расковывали булат из пакетов листовой стали – до 320 слоев: или: рассеянная в разных уровнях получают разный рисунок.

Донские казаки пользовались оружием всего мира – захватывали в боях. Оружие изготовлено было в основном мастерами Кавказа.

Прибалтийский булат:

Раскрыл его проф. Иванов Г.П., а адмирал Макаров С.О. нашел новое применение: при испытании броневых плит

Плита легко пробивалась с мягкой малоуглеродистой стороны, тогда изобрели бронебойный снаряд с мягким наконечником:

Следовательно, из-за этого старые мастера-кузнецы нашивали на очень твердое лезвие мягкую полоску, чтобы пробить стальные латы.

Производство булата связано с традициями и секретами. Очень трудно сварить полосы и прутки разного состава между собой и обеспечить требуемые свойства: гибкость твердость, остроту лезвия. Необходимо выдерживать температуру, скорость ковки, порядок соединения полос, удаление окислов, применение флюсов.

Японский булат

Японский булат был тверже и прочнее дамасской стали. Это связано с присутствием в составе стали молибдена (Мо). Мо – один из немногих элементов, добавка которого в сталь вызывает повышение ее вязкости и твердости одновременно. Все другие элементы, увеличивая прочность и твердость, увеличивают и хрупкость.

Изготовление: выплавленное железо (с Мо) проковывалось в прутья и закаливалось на 8–10 лет в землю. В процессе коррозии из металла выедались, выпадали частички, обогащенные вредными примесями. Заготовки напоминали сыр с дырками. Затем прутки науглероживали и проковывали многократно. Количество тончайших слоев достигало нескольких десятков тысяч.

Подразделяются на техническое железо (содержание углерода в сплаве менее 0,02%), стали (содержание углерода в сплаве от 0,02% до 2,14%) и чугуны (содержание углерода более 2,14%)

Характеристика сталей

Стали - сплавы железа (Fe) с углеродом (С), с содержанием последнего не более 2,14%. Стали характеризуются достаточно высокой плотностью (7,7 - 7,9 г/см 3) и другими физическими величинами:*

  • Удельная теплоёмкость при 20°C: 462 Дж/(кг·°C)
  • Температура плавления: 1450-1520°C
  • Удельная теплота плавления: 84 кДж/кг (20 ккал/кг, 23 Вт·ч/кг)
  • Коэффициент линейного теплового расширения при температуре около 20°C: 11,5·10-6 1/°С
  • Коэффициент теплопроводности при температуре 100°С: 30 Вт/(м·К)

*Данные характеристики представляют среднее значение. Фактическая величина свойств зависит от содержания углерода и легирующих элементов в стали. Для ее точного определения стоит пользоваться марочниками сталей и сплавов.

На практике используются стали с содержанием углерода не более 1,3%, т.к. при его более высоком содержании увеличивается хрупкость.

Классификация сталей

Стали характеризуются или классифицируются по множеству признаков:

Классификация по химическому составу

  • углеродистые стали - классифицируются в зависимости от содержания углерода в %:
    • низкоуглеродистые (< 0,25 %C)
    • среднеуглеродистые (0,25-0,65 %C)
    • высокоуглеродистые (> 0,65 %C)
  • легированные стали - классифицируются в зависимости от суммарного содержания легирующих элементов в %:
    • низколегированные (< 2,5%)
    • среднелегированные (2,5-10 %)
    • высоколегированные (> 10 %)

Классификация по назначению

  • конструкционные – применяются для изготовления деталей машин и механизмов, содержание углерода <0,8%. Конструкционные подразделяются на цементуемые, с содержанием углерода <0,3% и улучшаемые, с содержанием углерода >0,3%. Основную классификацию и группы конструкционных сталей можно посмотреть
  • инструментальные – применяются для изготовления мерительного, режущего инструмента, штампов горячего и холодного деформирования. Содержание углерода >0,8%;
  • с особыми свойствами: электротехнические, с особыми магнитными свойствами, жаропрочные, износостойкие и др.

Классификация по структуре

Классификация по Обергофферу - по структуре в равновесном состоянии

Изначально эта классификация содержала только 4 типа сталей:

  • доэвтектоидные
  • эвтектоидные
  • заэвтектоидные
  • ледебуритные (имеющие в литом состоянии эвтектику)

Позже были внесены дополнения:

  • ферритные
  • аустенитные

Равновесное состояние - состояние сплава или стали после медленного охлаждения, чаще всего после отжига

Классификация по Гийе - по структуре после нормализации (нагрева и охлаждения на воздухе)

  • перлитные
  • мартенситные
  • ферритные
  • аустенитные
  • карбидные

Также могут быть смешанные классы: феррито-перлитный, аустенитно-ферритный и т.д.

Классификация сталей по качеству

Количественным показателем качества является содержания вредных примесей- серы и фосфора:

  • обыкновенного качества (S≤0,05, P≤0,04)
  • качественные стали (S, P ≤0,035)
  • высококачественные (S, P ≤0,025)
  • особовысококачественные (S≤0,015, P≤0,025)

Классификация по способу выплавки

  • в мартеновских печах
  • в кислородных конверторах
  • в электрических печах: электродуговых, индукционных и др.

Классификация по степени раскисления

  • кипящие (кп)
  • полуспокойные (пс)
  • спокойные (сп)

Расширенные характеристики и свойства (технологические, физические... химический состав) некоторых марок сталей .

Классификация и маркировка чугунов

Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве.

Классификация чугунов

В зависимости от состояния углерода в чугуне, его подразделяют на следующие виды:

  • белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида

Такой чугун может быть доэвтектическими и заэвтектическими, а разделяет их эвтектический чугун (4,31% С). Структура доэвтектического чугуна – перлит, вторичный цементит и ледебурит, заэвтектического – первичный цементит с ледебуритом.

  • графитизированный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава. Такие чугуны подразделяют на:
    • серые - пластинчатая или червеобразная форма графита (ЧПГ)
    • высокопрочные - с шаровидным графитом (ЧШГ)
    • ковкие - хлопьевидный графит (ЧХГ)
    • чугун с вермикулярным графитом (ЧВГ) - имеет промежуточные свойства между СЧ и ВЧ. По форме графита напоминает СЧ, но имеет более толстые и более короткие пластины с округленными концами

Еще чугуны классифицируются по основе, в которой расположен графит. Основа может быть перлитной, ферритной, феррито-перлитной.

Маркировка чугунов

Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления δв при растяжении в МПа-10. Серый чугун обозначают буквами "СЧ" (ГОСТ 1412-85), высокопрочный - "ВЧ" (ГОСТ 7293-85), ковкий - "КЧ" (ГОСТ 1215-85).

Пример маркировки

СЧ10 - серый чугун с пределом прочности при растяжении 100 МПа;
ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа;
КЧ35 - ковкий чугун с δв растяжением примерно 350 МПа.

Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун: С - серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.

Чугуны специального назначения

К этой группе чугунов относятся жаростойкие (ГОСТ 7769-82), жаропрочные и коррозионностойкие (ГОСТ 11849-76) чугуны. Сюда же можно отнести немагнитные, износостойкие и антифрикционные чугуны.

Жаростойкими являются серые и высокопрочные чугуны, легированные кремнием (ЧС5) и хромом (4Х28, 4Х32). Высокой термо- и жаростойкостью обладают аустенитные чугуны: высоколегированный никелевый серый ЧН15Д7 и с шаровидным графитом ЧН15ДЗШ.

К жаропрочным относятся аустенитные чугуны с шаровидным графитом ЧН19ХЗШ и ЧН11Г7Ш.

В качестве коррозионностойких применяют чугуны, легированные кремнием (ферросилиды) - ЧС13, ЧС15, ЧС17 и хромом - 4Х22, 4Х28, 4Х32. Для повышения коррозионной стойкости кремнистых чугунов их легируют молибденом (4С15М4, 4С17МЗ - антихлоры). Высокой коррозионной стойкостью в щелочах обладают никелевые чугуны, например аустенитный чугун 4Н15Д7.

В качестве немагнитных чугунов также применяются аустенитные чугуны.

К износостойким чугунам относятся половинчатые и отбеленные чугуны. К износостойким половинчатым чугунам относится, например, серый чугун марки И4НХ2, легированный никелем и хромом, а также чугуны И4ХНТ, И4Н1МШ (с шаровидным графитом).

Понятие сплава, их классификация и свойства.

В технике металлами называют все металлические материа­лы. К ним относятся простые металлы и сложные металлы - сплавы.

Простые металлы состоят из одного основного элемента и незна­чительного количества примесей других элементов. Например, тех­нически чистая медь содержит от 0,1 до 1% примесей свинца, вис­мута, сурьмы, железа и других элементов.

Сплавы - это сложные металлы, представляющие сочетание какого-либо простого металла (основы сплава) с другими метал­лами или неметаллами. Например, латунь - сплав меди с цинком. Здесь основу сплава составляет медь.

Химический элемент, входящий в состав металла или спла­ва, называется компонентом. Кроме основного компонента, преобла­дающего в сплаве, различают еще легирующие компоненты, вводи­мые в состав сплава для получения требуемых свойств. Так, для улучшения механических свойств и коррозионной стойкости латуни в нее добавляют алюминий, кремний, железо, марганец, олово, сви­нец и другие легирующие компоненты.

По числу компонентов сплавы делятся на двухкомпонентные (двойные), трехкомпонентные (тройные) и т. д. Кроме основных и легирующих компонентов, в сплаве содержатся примеси других эле­ментов.

Большинство сплавов получают сплавлением компонентов в жид­ком состоянии. Другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.

Способность металлов к взаимному растворению создает хорошие условия для получения большого числа сплавов, обладаю­щих самыми разнообразными сочетаниями полезных свойств, ко­торых нет у простых металлов.

Сплавы превосходят простые металлы по прочности, твердости, обрабатываемости и т. д. Вот почему они применяются в технике значительно шире простых металлов. Например, железо - мягкий металл, почти не применяющийся в чистом виде. Зато самое широ­кое применение в технике имеют сплавы железа с углеродом - ста­ли и чугуны.

На современном этапе развития техники наряду с увеличе­нием количества сплавов и усложнением их состава большое зна­чение приобретают металлы особой чистоты. Содержание основного компонента в таких металлах составляет от 99,999 до 99,999999999%
и более. Металлы особой чистоты нужны ракетостроению, атомной, электронной и другим новым отраслям техники.

В зависимости от характера взаимодействия компонентов различают сплавы:

1) механические смеси;

2) химические соединения;

3) твердые растворы.

1) Механическая смесь двух компонентов образуется тогда, ко­гда они в твердом состоянии не растворяются друг в друге и не вступают в химическое взаимодействие. Сплавы - механические смеси (например, свинец - сурьма, олово - цинк) неоднородны по своей структуре и представляют смесь кристаллов данных компо­нентов. При этом кристаллы каждого компонента в сплаве полно­стью сохраняют свои индивидуальные свойства. Вот почему свой­ства таких сплавов (например, электросопротивление, твердость и др.) определяются как среднее арифметическое от величины свойств обоих компонентов.

2) Твердые растворы характеризуются образованием общей пространственной кристаллической решетки атомами основ­ного металла-растворителя и атомами растворимого элемента.
Структура таких сплавов состоит из однородных кристаллических зерен, подобно чистому металлу. Существуют твердые растворы за­мещения и твердые растворы внедрения.

К таким сплавам относятся ла­туни, медноникелевые, железохромистые и др.

Сплавы - твердые растворы являются самыми распространен­ными. Их свойства отличаются от свойств составляющих компонен­тов. Так, например, твердость и электросопротивление у твердых растворов значительно выше, чем у чистых компонентов. Благодаря высокой пластичности они хорошо поддаются ковке и другим видам обработки давлением. Литейные свойства и обрабатываемость резанием у твердых растворов низкие.

3) Химические соединения , подобно твердым растворам, явля­ются однородными сплавами. При их затвердевании образуется совершенно новая кристаллическая решетка, отличная от решеток составляющих сплав компонентов. Поэтому свойства химического соединения самостоятельны и не зависят от свойств компонентов. Химические соединения образуются при строго опре­деленном количественном соотношении сплавляемых компонентов. Состав сплава химического соединения выражается химической формулой. Эти сплавы обладают обычно высоким электросопротив­лением, большой твердостью, малой пластичностью. Так, химиче­ское соединение железа с углеродом - цементит (Fe 3 C) тверже чистого железа в 10 раз.

Материаловедение: конспект лекций Алексеев Виктор Сергеевич

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе. Практически это чистое железо. Цементит химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение? -железа в? -железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в? -железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C ? -железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Железо Оно было известно уже в древности. А в Средневековье различали не только сталь, железо и чугун, но и различные их марки. Например, клинки оружия могли изготавливаться из обычной стали или из дамасской – знаменитого булата. Кузнецы того времени, конечно же, не знали,

Из книги Загадка булатного узора автора Гуревич Юрий Григорьевич

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

«Белое железо» индийского царя Пора Во второй половине I тысячелетия до нашей эры железо знали уже многие страны и народы. Из него изготовляли плуг и топор, кинжал и меч. Оружейники старались сделать кинжалы, мечи прочными и упругими, твердыми и острыми. В древности это

Из книги Боевые корабли автора Перля Зигмунд Наумович

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

1. Диаграмма железо-цементит Диаграмма железо-цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe-Fe 3 C; штриховые – система Fe-C)Углеродистые

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

Из книги автора

4. Титановые сплавы Титан – металл серебристо-белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

Из книги автора

5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло-серо-голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Из книги автора

Пар и железо В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство вытесняло ручной труд. На

Из книги автора

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

Из книги автора

10. Серебро и его сплавы Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого

Из книги автора

11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

Из книги автора

Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в

Из книги автора

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Из книги автора

47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,

Лучшие статьи по теме