Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

Метод кластеризации. Обзор алгоритмов кластеризации данных

Многие из нас слышали словосочетание «кластерный анализ», но вот что оно означает, представляют далеко не все. К тому же звучит оно более чем загадочно! На самом деле это всего лишь название метода разбиения выборки данных на категории элементов по определенным критериям. Например, кластерный анализ позволяет разделить людей на группы с высокой, средней и низкой самооценкой. Проще говоря, кластер - это тип объектов, схожих по определенному признаку.

Кластерный анализ: проблемы в использовании

Решив применить в своем исследовании данный метод, нужно помнить, что выделенные в его ходе кластеры могут быть неустойчивыми. Поэтому, как и в случае с факторным анализом, нужно проверить результаты на другой группе объектов или через определенный промежуток времени вычислить погрешность измерения. Более того, лучше всего использовать кластерный анализ на больших выборках, подобранных методом рандомизации или стратификации, ведь только так можно сделать научный вывод, применяя индукцию. Лучше всего он показал себя в проверке гипотез, а не в их создании на пустом месте.

Иерархический кластерный анализ

Если вам нужно классифицировать случайные элементы быстро, то начать можно с рассмотрения каждого из них на начальном этапе как отдельного кластера. В этом и заключается суть одного из самых простых для понимания видов кластерного анализа. Используя его, исследователь на втором этапе образует пары элементов, которые являются похожими по нужному признаку, а потом соединяет их между собой необходимое количество раз. Кластеры, находящиеся на минимальном расстоянии между собой, определяются с помощью интегративной процедуры. Повторяется она до тех пор, пока не будет достигнуто соответствие одному из следующих критериев:

  • получение заранее запланированного количества кластеров;
  • каждый из кластеров содержит необходимое количество элементов;
  • каждая группа обладает нужным соотношением разнородности и однородности внутри нее.

Для того чтобы правильно вычислить расстояние между кластерами, зачастую используют такие приемы:

  • одиночной и полной связи;
  • средней взаимосвязи Кинга;
  • центроидный метод;
  • прием групповых средних.

Для оценки результатов кластеризации применяют следующие критерии:

  • индекс четкости;
  • коэффициент разбиения;
  • обычная, нормализованная и модифицированная энтропия;
  • второй и третий функционал Рубенса.

Методы кластерного анализа

Чаще всего при анализе выборки объектов применяют метод минимального расстояния. Он заключается в том, что в кластер объединяют элементы с коэффициентом сходства, который больше порогового значения. При использовании метода локального расстояния выделяются два кластера: расстояние между точками первого из них максимальное, а второго - минимальное. Центроидный способ кластеризации предполагает вычисление расстояний между средними значениями показателей в группах. А метод Ворда рациональнее всего применять для группировки близких по исследуемому параметру кластеров.

Кластерный анализ - это метод классификационного анализа; его основное назначение - разбиение множества исследуемых объектов и признаков на однородные в некотором смысле группы, или кластеры. Это многомерный статистический метод, поэтому предполагается, что исходные данные могут быть значительного объема, т.е. существенно большим может быть как количество объектов исследования (наблюдений), так и признаков, характеризующих эти объекты.

В прикладной статистике многомерными статистическими методами долго не могли пользоваться из-за отсутствия вычислительной техники для обработки больших массивов данных. Активно эти методы стали развиваться со второй половины ХХ в. при появлении быстродействующих компьютеров, выполняющих за доли секунды необходимые вычисления, на которые до этого уходили дни, недели, месяцы . В настоящее время препятствием к широкому использованию многомерных статистических методов, в том числе и кластерного анализа, является отсутствие у исследователей навыков и умения работать со статистическими пакетами прикладных программ.

Техника кластеризации может применяться в самых различных прикладных областях, в том числе и в медицине. Например, кластеризация заболеваний, симптомов, признаков заболеваний, методов лечения может привести к более полному и глубокому пониманию медицинских проблем, связанных с лечением больных.

Большое достоинство кластерного анализа в том, что он дает возможность производить разбиение объектов не по одному признаку, а по ряду признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов и позволяет исследовать множество исходных данных практически произвольной природы.

Так как кластеры - это группы однородности, то задача кластерного анализа заключается в том, чтобы на основании признаков объектов разбить их множество на m (m - целое) кластеров так, чтобы каждый объект принадлежал только одной группе разбиения. При этом объекты, принадлежащие одному кластеру, должны быть однородными (сходными), а объекты, принадлежащие разным кластерам, - разнородными.

Если объекты кластеризации представить как точки в n-мерном пространстве признаков (n-количество признаков, характеризующих объекты), то сходство между объектами определяется через понятие расстояния между точками, так как интуитивно понятно, что чем меньше расстояние между объектами, тем они более схожи.

Алгоритмов кластерного анализа достаточно много. Все их можно подразделить на иерархические и неиерархические.

Иерархические (древовидные) процедуры - наиболее распространённые алгоритмы кластерного анализа по их реализации на ЭВМ. Различают агломеративные (от слова agglomerate - собирать) и итеративные дивизивные (от слова division - разделять) процедуры.

Принцип работы иерархических агломеративных процедур состоит в последовательном объединении групп элементов сначала самых близких, а затем всё более отдалённых друг от друга. Принцип работы иерархических дивизивных процедур, наоборот, состоит в последовательном разделении групп элементов сначала самых далёких, а затем всё более близких друг от друга. Большинство этих алгоритмов исходит из матрицы расстояний (сходства). К недостаткам иерархических процедур следует отнести громоздкость их вычислительной реализации. На каждом шаге алгоритмы требуют вычисления матрицы расстояний, а следовательно, ёмкой машинной памяти и большого количества времени. В этой связи реализация таких алгоритмов при числе наблюдений, большем нескольких сотен, нецелесообразна, a в ряде случаев и невозможна.

Общий принцип работы агломеративного алгоритма следующий. На первом шаге каждое наблюдение рассматривается как отдельный кластер. В дальнейшем на каждом шаге работы алгоритма происходит объединение двух самых близких кластеров, и с учётом принятого расстояния по формуле пересчитывается матрица расстояний, размерность которой, очевидно, снижается на единицу. Работа алгоритма заканчивается, когда все наблюдения объединены в один класс. Большинство программ, реализующих алгоритм иерархической классификации, предусматривает графическое представление классификации в виде дендрограммы.

В программе STATISTICA реализованы агломеративные методы минимальной дисперсии - древовидная кластеризация и двухвходовая кластеризация, а также дивизивный метод k-средних.

В методе древовидной кластеризации предусмотрены различные правила

иерархического объединения в кластеры:

  • 1. Правило одиночной связи. На первом шаге объединяются два наиболее близких объекта, т.е. имеющие максимальную меру сходства. На следующем шаге к ним присоединяется объект с максимальной мерой сходства с одним из объектов кластера, т.е. для его включения в кластер требуется максимальное сходство лишь с одним членом кластера. Метод называют еще методом ближайшего соседа, так как расстояние между двумя кластерами определяется как расстояние между двумя наиболее близкими объектами в различных кластерах. Это правило "нанизывает" объекты для формирования кластеров. Недостаток данного метода - образование слишком больших продолговатых кластеров.
  • 2. Правило полных связей. Метод позволяет устранить недостаток, присущий методу одиночной связи. Суть правила в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который больше некоторого порогового значения S. В терминах евклидова расстояния это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения d. Таким образом, d определяет максимально допустимый диаметр подмножества, образующего кластер. Этот метод называют еще методом наиболее удаленных соседей, так как при достаточно большом пороговом значении d расстояние между кластерами определяется наибольшим расстоянием между любыми двумя объектами в различных кластерах.
  • 3. Правило невзвешенного попарного среднего. Расстояние между двумя кластерами определяется как среднее расстояние между всеми парами объектов в них. Метод эффективен, когда объекты в действительности формируют различные группы, однако он работает одинаково хорошо и в случаях протяженных (цепочного типа) кластеров.
  • 4. Правило взвешенное попарное среднее. Метод идентичен предыдущему, за исключением того, что при вычислении размер соответствующих кластеров используется в качестве весового коэффициента. Желательно этот метод использовать, когда предполагаются неравные размеры кластеров.
  • 5. Невзвешенный центроидный метод. Расстояние между двумя кластерами определяется как расстояние между их центрами тяжести.
  • 6. Взвешенный центроидный метод. Идентичен предыдущему, за исключением того, что при вычислениях расстояния используют веса для учета разности между размерами кластеров. Поэтому, если имеются (или подозреваются) значительные отличия в размерах кластеров, этот метод оказывается предпочтительнее предыдущего.
  • 7. Правило Уорда (Варда). В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть не что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов отклонений. Этот метод направлен на объединение близко расположенных кластеров. Замечено, что метод Уорда приводит к образованию кластеров примерно равных размеров и имеющих форму гиперсфер.

Ранее мы рассмотрели методы кластеризации объектов (наблюдений), однако иногда кластеризация по переменным может привести к достаточно интересным результатам. В модуле Кластерный анализ также предусмотрена эффективная двухвходовая процедура, которая позволит кластеризовать сразу в двух направлениях - по наблюдениям и переменным.

Метод k-средних

Предположим, есть гипотезы относительно числа m кластеров (по переменным или наблюдениям). Тогда можно задать программе создать ровно m кластеров так, чтобы они были настолько различны, насколько это возможно. Именно для решения задач этого типа предназначен метод k-means (k-средних). Гипотеза может основываться на теоретических соображениях, результатах предшествующих исследований или догадке. Выполняя последовательное разбиение на различное число кластеров, можно сравнивать качество получаемых решений.

Программа начинает с m случайно выбранных кластеров, а затем изменяет принадлежность объектов к ним, чтобы минимизировать изменчивость внутри кластеров и максимизировать изменчивость между кластерами. Алгоритм случайным образом в пространстве назначает центры будущих кластеров. Затем вычисляет расстояние между центрами кластеров и каждым объектом, и объект приписывается к тому кластеру, к которому он ближе всего. Завершив приписывание, алгоритм вычисляет средние значения для каждого кластера. Этих средних будет столько, сколько используется переменных для проведения анализа, - k штук. Набор средних представляет собой координаты нового положения центра кластера. Алгоритм вновь вычисляет расстояние от каждого объекта до центров кластеров и приписывает объекты к ближайшему кластеру. Вновь вычисляются центры тяжести кластеров, и этот процесс повторяется до тех пор, пока центры тяжести не перестанут "мигрировать" в пространстве. Если в древовидной кластеризации можно использовать категориальные переменные, то так как в методе k-средних в качестве метрики используют евклидову метрику, то перед проведением кластеризации необходимо стандартизовать переменные. По этой же причине в методе предполагается, что переменные непрерывные и измерены как минимум в интервальной шкале.

Кластерный анализ (КлА)– это совокупность методов многомерной классификации, целью которой является образование групп (кластеров) схожих между собой объектов. В отличие от традиционных группировок, рассматриваемых в общей теории статистики, КлА приводит к разбиению на группы с учетом всех группировочных признаков одновременно.

Методы КлА позволяют решать следующие задачи:

Проведение классификации объектов с учетом множества признаков;

Проверка выдвигаемых предположений о наличии некоторой структуры в изучаемой совокупности объектов, т.е. поиск существующей структуры;

Построение новых классификаций для слабо изученных явлений, когда необходимо установить наличие связей внутри совокупности и попытаться привнести в нее структуру.

Для записи формализованных алгоритмов КлА используются следующие условные обозначения:

– совокупность объектов наблюдения;

– i-е наблюдение в m-мерном пространстве признаков ();

– расстояние между -м и -м объектами;

– нормированные значения исходных переменных;

– матрица расстояний между объектами.

Для реализации любого метода КлА необходимо ввести понятие «сходство объектов». Причем в процессе классификации в каждый кластер должны попадать объекты, имеющие наибольшее сходство друг с другом с точки зрения наблюдаемых переменных.

Для количественной оценки сходства вводится понятие метрики. Каждый объект описывается -признаками и представлен как точка в -мерном пространстве. Сходство или различие между классифицируемыми объектами устанавливается в зависимости от метрического расстояния между ними. Как правило, используются следующие меры расстояния между объектами:

Евклидово расстояние ;

Взвешенное евклидово расстояние ;

Расстояние city-block ;

Расстояние Махаланобиса ,

где – расстояние между -ым и -ым объектами;

, – значения -переменной и соответственно у -го и -го объектов;

, – векторы значений переменных у -го и -го объектов;

– общая ковариационная матрица;

– вес, приписываемый -й переменной.

Все методы КлА можно разделить на две группы: иерархические (агломеративные и дивизимные) и итеративные (метод -cpeдних, метод поиска сгущений).

Иерархический кластерный анализ. Из всех методов кластерного анализа наиболее распространенными является агломеративный алгоритм классификации. Сущность аглогритма заключается в том, что на первом шаге каждый объект выборки рассматривается как отдельный кластер. Процесс объединения кластеров происходит последовательно: на основании матрицы расстояний или матрицы сходства объединяются наиболее близкие объекты. Если матрица расстояний первоначально имеет размерность (), то полностью процесс объединения завершается за () шагов. В итоге все объекты будут объединены в один кластер.

Последовательность объединения может быть представлена в виде дендрограммы, представленной на рисунке 3.1. Дендрограмма показывает, что на первом шаге объединены в один кластер второй и третий объекты при расстоянии между ними 0,15. На втором шаге к ним присоединился первый объект. Расстояние от первого объекта до кластера, содержащего второй и третий объекты, 0,3 и т.д.

Множество методов иерархического кластерного анализа отличаются алгоритмами объединения (сходства), из которых наиболее распространенными являются: метод одиночной связи, метод полных связей, метод средней связи, метод Уорда.

Метод полных связей – включение нового объекта в кластер происходит только в том случае, если сходство между всеми объектами не меньше некоторого заданного уровня сходства (рисунок 1.3).


б)


Метод средней связи – при включении нового объекта в уже существующий кластер вычисляется среднее значение меры сходства, которое затем сравнивается с заданным пороговым уровнем. Если речь идет об объединении двух кластеров, то вычисляют меру сходства между их центрами и сравнивают ее с заданным пороговым значением. Рассмотрим геометрический пример с двумя кластерами (рисунок 1.4).

Рисунок 1.4. Объединение двух кластеров по методу средней связи:

Если мера сходства между центрами кластеров () будет не меньше заданного уровня, то кластеры и будут объединены в один.

Метод Уорда – на первом шаге каждый кластер состоит из одного объекта. Первоначально объединяются два ближайших кластера. Для них определяются средние значения каждого признака и рассчитывается сумма квадратов отклонений

, (1.1)

где – номер кластера, – номер объекта, – номер признака; – количество признаков, характеризующих каждый объект; количество объектов в - мкластере.

В дальнейшем на каждом шаге работы алгоритма объединяются те объекты или кластеры, которые дают наименьшее приращение величины .

Метод Уорда приводит к образованию кластеров приблизительно равных размеров с минимальной внутрикластерной вариацией.

Алгоритм иерархического кластерного анализа можно представить в виде последовательности процедур:

Нормирование исходных значений переменных;

Расчет матрицы расстояний или матрицы мер сходства;

Определение пары самых близких объектов (кластеров) и их объединение по выбранному алгоритму;

Повторение первых трех процедур до тех пор, пока все объекты не будут объединены в один кластер.

Мера сходства для объединения двух кластеров определяется следующими методами:

Метод «ближайшего соседа» – степень сходства между кластерами оценивается по степени сходства между наиболее схожими (ближайшими) объектами этих кластеров;

Метод «дальнего соседа» – степень сходства оценивается по степени сходства между наиболее отдаленными (несхожими) объектами кластеров;

Метод средней связи – степень сходства оценивается как средняя величина степеней сходства между объектами кластеров;

Метод медианной связи – расстояние между любым кластером S и новым кластером, который получился в результате объединения кластеров р и q, определяется как расстояние от центра кластера S до середины отрезка, соединяющего центры кластеров р и q.

Метод поиска сгущений . Одним из итеративных методов классификации является алгоритм поиска сгущений. Суть итеративного алгоритма данного метода заключается в применении гиперсферы заданного радиуса, которая перемещается в пространстве классификационных признаков с целью поиска локальных сгущений объектов.



Метод поиска сгущений требует, прежде всего, вычисления матрицы расстояний (или матрицы мер сходства) между объектами и выбора первоначального центра сферы. Обычно на первом шаге центром сферы служит объект (точка), в ближайшей окрестности которого расположено наибольшее число соседей. На основе заданного радиуса сферы (R) определяется совокупность точек, попавших внутрь этой сферы, и для них вычисляются координаты центра (вектор средних значений признаков).

Когда очередной пересчет координат центра сферы приводит к такому же результату, как и на предыдущем шаге, перемещение сферы прекращается, а точки, попавшие в нее, образуют кластер, и из дальнейшего процесса кластеризации исключаются. Перечисленные процедуры повторяются для всех оставшихся точек. Работа алгоритма завершается за конечное число шагов, и все точки оказываются распределенными по кластерам. Число образовавшихся кластеров заранее неизвестно и сильно зависит от радиуса сферы.

Для оценки устойчивости полученного разбиения целесообразно повторить процесс кластеризации несколько раз для различных значений радиуса сферы, изменяя каждый раз радиус на небольшую величину.

Существуют несколько способов выбора радиуса сферы. Если – расстояние между -м и -м объектами, то в качестве нижней границы радиуса ()выбирают , а верхняя граница радиуса может быть определена как .

Если начинать работу алгоритма с величины и при каждом его повторении изменять на небольшую величину, то можно выявить значения радиусов, которые приводят к образованию одного и того же числа кластеров, т.е. к устойчивому разбиению.

Пример 1. На основании приведенных данных таблицы 1.1 необходимо провести классификацию пяти предприятий при помощи иерархического агломеративного кластерного анализа.

Таблица 1.1

Здесь: – среднегодовая стоимость основных производственных фондов, млрд. р.; – материальные затраты на один рубль произведенной продукции, коп.; – объем произведенной продукции, млрд. р.

Решение. Перед тем как вычислять матрицу расстояний, нормируем исходные данные по формуле

Матрица значений нормированных переменных будет иметь вид

.

Классификацию проведем при помощи иерархического агломеративного метода. Для построения матрицы расстояний воспользуемся евклидовым расстоянием. Тогда, например, расстояние между первым и вторым объектами будет

Матрица расстояний характеризует расстояния между объектами, каждый из которых, на первом шаге представляет собой отдельный кластер

.

Как видно из матрицы , наиболее близкими являются объекты и . Объединим их в один кластер и присвоим ему номер . Пересчитаем расстояния всех оставшихся объектов (кластеров) до кластера получим новую матрицу расстояний

.

В матрице расстояния между кластерами определены по алгоритму «дальнего соседа». Тогда расстояние между объектом и кластером равно

В матрице опять находим самые близкие кластеры. Это будут и , . Следовательно, на этом шаге объединяем и кластеры; получим новый кластер, содержащий объекты , . Присвоим ему номер . Теперь имеем три кластера {1,3}, {2,5}, {4}.

.

Судя по матрице ,на следующем шаге объединяем кластеры и , в один кластер и присвоим ему номер . Теперь имеем только два кластера:

.

И, наконец, на последнем шаге объединим кластеры и на расстоянии 3,861.


Представим результаты классификации в виде дендрограммы (рисунок 1.5). Дендрограмма свидетельствует о том, что кластер более однороден по составу входящих объектов, так как в нем объединение происходило при меньших расстояниях, чем в кластере .

Рисунок 3.5.Дендрограмма кластеризации пяти объектов

Пример 2 . На основании данных, приведенных ниже, проведите классификацию магазинов по трем признакам: – площадь торгового зала, м 2 , – товарооборот на одного продавца, ден. ед., – уровень рентабельности, %.

Номер магазина Номер магазина

Для классификации магазинов используйте метод поиска сгущений (необходимо выделить первый кластер).

Решение. 1. Рассчитаем расстояния между объектами по евклидовой метрике

,

где , – стандартизированные значения исходных переменных соответственно у -го и -го объектов; т – число признаков.

.

2. На основе матрицы Z рассчитаем квадратную симметричную матрицу расстояний между объектами ().

Анализ матрицы расстояний помогает определить положение первоначального центра сферы и выбрать радиус сферы.

В данном примере большинство «маленьких» расстояний находятся в первой строке, т.е. у первого объекта достаточно много «близких» соседей. Следовательно, первый объект можно взять в качестве центра сферы.

3. Зададим радиус сферы . В этом случае в сферу попадают объекты, расстояние которых до первого объекта меньше 2.

Для шести точек (объекты 1, 2, 3, 6, 7, 8) определяем координаты центра тяжести: .

4. На следующем шаге алгоритма помещаем центр сферы в точку и определяем расстояние каждого объекта до нового центра.

Задачи кластеризации в Data Mining

Введение в кластерный анализ

Из всей обширной области применения кластерного анализа,например, задачи социально-экономического прогнозирования.

При анализе и прогнозировании социально-экономических явлений исследователь довольно часто сталкивается с многомерностью их описания. Этопроисходит при решении задачи сегментирования рынка, построении типологии стран по достаточно большому числу показателей, прогнозирования конъюнктуры рынка отдельных товаров, изучении и прогнозировании экономической депрессии и многих других проблем.

Методы многомерного анализа - наиболее действенный количественный инструмент исследования социально-экономических процессов, описываемых большимчислом характеристик. К ним относятся кластерный анализ, таксономия, распознавание образов, факторный анализ.

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Иногда подход кластерного анализа называют в литературе численной таксономией, численной классификацией, распознаванием с самообучением и т.д.

Первое применение кластерный анализ нашел в социологии. Название кластерный анализ происходит от английского слова cluster – гроздь, скопление. Впервые в 1939 был определен предмет кластерного анализа и сделано его описание исследователем Трионом. Главное назначение кластерного анализа – разбиение множества исследуемых объектов и признаков на однородные в соответствующем понимании группы или кластеры. Это означает, что решается задача классификации данных и выявления соответствующей структуры в ней. Методы кластерного анализа можно применять в самых различных случаях, даже в тех случаях, когда речь идет о простой группировке, в которой все сводится к образованию групп по количественному сходству.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы. Это имеет большое значение, например, для прогнозирования конъюнктуры, когда показатели имеют разнообразный вид, затрудняющий применение традиционных эконометрических подходов.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать ихкомпактными и наглядными.

Важное значение кластерный анализ имеет применительно к совокупностям временных рядов, характеризующих экономическое развитие (например, общехозяйственной и товарной конъюнктуры). Здесь можно выделять периоды, когда значения соответствующих показателей были достаточно близкими, а также определять группы временных рядов, динамика которых наиболее схожа.

Кластерный анализ можно использовать циклически. В этом случае исследование производится до тех пор, пока не будут достигнуты необходимые результаты. При этом каждый цикл здесь может давать информацию, которая способна сильно изменить направленность и подходы дальнейшего применения кластерного анализа. Этот процесс можно представить системой с обратной связью.

В задачахсоциально-экономического прогнозирования весьма перспективно сочетание кластерного анализас другими количественными методами (например, с регрессионным анализом).

Как и любой другой метод, кластерный анализ имеет определенные недостаткии ограничения : В частности, состави количество кластеров зависит отвыбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счетзамены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемойсовокупности каких-либо значений кластеров.

В кластерном анализе считается, что:

а) выбранные характеристики допускают в принципе желательное разбиение на кластеры;

б) единицы измерения (масштаб) выбраны правильно.

Выбор масштаба играет большую роль. Как правило, данные нормализуют вычитанием среднего и делением на стандартное отклоненение, так что дисперсия оказывается равной единице.

1.Задача кластеризации

Задача кластеризации заключается в том, чтобы на основании данных, содержащихся во множестве Х , разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q 1 , Q 2 , …, Q m , так, чтобы каждый объект G j принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

Например, пусть G включает n стран, любая из которых характеризуется ВНП на душу населения (F 1 ), числом М автомашин на 1 тысячу человек (F 2 ), душевым потреблением электроэнергии (F 3 ), душевым потреблением стали (F 4 ) и т.д. Тогда Х 1 (вектор измерений) представляет собой набор указанных характеристик для первой страны, Х 2 - для второй, Х 3 для третьей, и т.д. Задача заключается в том, чтобы разбить страны по уровню развития.

Решением задачи кластерного анализа являются разбиения, удовлетворяющие некоторому критерию оптимальности. Этот критерий может представлять собой некоторый функционал, выражающий уровни желательности различных разбиений и группировок, который называют целевой функцией. Например, в качестве целевой функции может быть взята внутригрупповая сумма квадратов отклонения:

где x j - представляет собой измерения j -го объекта.

Для решениязадачи кластерного анализа необходимо определить понятие сходства и разнородности.

Понятно то, что объекты i -ый и j -ый попадали бы в один кластер, когда расстояние (отдаленность) между точками Х i и Х j было бы достаточно маленьким и попадали бы в разные кластеры, когда это расстояние было бы достаточно большим. Таким образом, попадание в один или разные кластеры объектов определяется понятием расстояния между Х i и Х j из Ер , где Ер - р -мерное евклидово пространство. Неотрицательная функция d(Х i , Х j) называется функцией расстояния (метрикой), если:

а) d(Х i , Х j) ³ 0 , для всех Х i и Х j из Ер

б) d(Х i , Х j) = 0 , тогда и только тогда, когда Х i = Х j

в) d(Х i , Х j) = d(Х j , Х i )

г) d(Х i , Х j) £ d(Х i , Х k) + d(Х k , Х j), где Х j ; Х i и Х k - любые три вектора из Ер .

Значение d(Х i , Х j) для Х i и Х j называется расстоянием между Х i и Х j и эквивалентно расстоянию между G i и G j соответственно выбранным характеристикам (F 1 , F 2 , F 3 , ..., F р).

Наиболее часто употребляются следующие функции расстояний:

1. Евклидово расстояние d 2 (Х i , Х j) =

2. l 1 - нормаd 1 (Х i , Х j) =

3. Супремум - норма d ¥ i , Х j) = sup

k = 1, 2, ..., р

4. l p - норма d р (Х i , Х j) =

Евклидова метрика является наиболее популярной. Метрика l 1 наиболее легкая для вычислений. Супремум-норма легко считается и включает в себя процедуру упорядочения, а l p - норма охватывает функции расстояний 1, 2, 3,.

Пусть n измерений Х 1 , Х 2 ,..., Х n представлены в виде матрицы данных размером p ´ n :

Тогда расстояние между парами векторов d(Х i , Х j) могут быть представлены в виде симметричной матрицы расстояний:

Понятием, противоположным расстоянию, является понятие сходства между объектами G i . и G j . Неотрицательная вещественная функция S(Х i ; Х j) = S i j называется мерой сходства, если:

1) 0 £ S(Х i , Х j) < 1 для Х i ¹ Х j

2) S( Х i , Х i ) = 1

3) S( Х i , Х j ) = S(Х j , Х i )

Пары значений мер сходства можно объединить в матрицу сходства:

Величину S ij называют коэффициентом сходства.

2. Методы кластеризации

Сегодня существует достаточно много методов кластерного анализа. Остановимся на некоторых из них (ниже приводимые методы принято называть методами минимальной дисперсии).

Пусть Х - матрица наблюдений: Х = (Х 1 , Х 2 ,..., Х u) и квадрат евклидова расстояния между Х i и Х j определяется по формуле:

1) Метод полных связей.

Суть данного метода в том, что два объекта, принадлежащих одной и той же группе (кластеру), имеют коэффициент сходства, который меньше некоторого порогового значения S . В терминах евклидова расстояния d это означает, что расстояние между двумя точками (объектами) кластера не должно превышать некоторого порогового значения h . Таким образом, h определяет максимально допустимый диаметр подмножества, образующего кластер.

2) Метод максимального локального расстояния.

Каждый объект рассматривается как одноточечный кластер. Объекты группируются по следующему правилу: два кластера объединяются, если максимальное расстояние между точками одного кластера и точками другого минимально. Процедура состоит из n - 1 шагов и результатом являются разбиения, которые совпадают со всевозможными разбиениями в предыдущем методе для любых пороговых значений.

3) Метод Ворда .

В этом методе в качестве целевой функции применяют внутригрупповую сумму квадратов отклонений, которая есть ни что иное, как сумма квадратов расстояний между каждой точкой (объектом) и средней по кластеру, содержащему этот объект. На каждом шаге объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров.

4) Центроидный метод.

Расстояние между двумя кластерами определяется как евклидово расстояние между центрами (средними) этих кластеров:

d 2 ij =(` X – ` Y) Т (` X – ` Y) Кластеризация идет поэтапно на каждом из n–1 шагов объединяют два кластера G и p , имеющие минимальное значение d 2 ij Если n 1 много больше n 2 , то центры объединения двух кластеров близки друг к другу и характеристикивторого кластера при объединении кластеров практически игнорируются. Иногда этот метод иногда называют еще методом взвешенных групп.

3. Алгоритм последовательной кластеризации

Рассмотрим Ι = (Ι 1 , Ι 2 , … Ι n ) как множество кластеров {Ι 1 } , {Ι 2 },…{Ι n } . Выберем два из них, например, Ι i и Ι j , которые в некотором смысле более близки друг к другу и объединим их в один кластер. Новое множество кластеров, состоящее уже из n -1 кластеров, будет:

{Ι 1 }, {Ι 2 }…, i , Ι j }, …, {Ι n } .

Повторяя процесс, получим последовательные множества кластеров, состоящие из (n -2), (n -3), (n –4) и т.д. кластеров. В конце процедуры можно получить кластер, состоящий из n объектов и совпадающий с первоначальным множеством Ι = (Ι 1 , Ι 2 , … Ι n ) .

В качестве меры расстояния возьмем квадрат евклидовой метрикиd i j 2 . и вычислим матрицу D = {d i j 2 }, где d i j 2 - квадрат расстояния между

Ι i и Ι j:

….

Ι n

d 12 2

d 13 2

….

d 1n 2

d 23 2

….

d 2n 2

….

d 3n 2

….

….

….

Ι n

Пусть расстояние между Ι i и Ι j будет минимальным:

d i j 2 = min {d i j 2 , i ¹ j}. Образуем с помощью Ι i и Ι j новый кластер

i , Ι j } . Построим новую ((n-1), (n-1)) матрицу расстояния

{ Ι i , Ι j }

….

Ι n

{ Ι i ; Ι j }

d i j 2 1

d i j 2 2

….

d i j 2 n

d 12 2

d 1 3

….

d 1 2 n

….

d 2 n

….

d 3n

(n -2) строки для последней матрицы взяты из предыдущей, а первая строка вычислена заново. Вычисления могут быть сведенык минимуму, если удастся выразить d i j 2 k ,k = 1, 2,…, n ; (k ¹ i ¹ j) через элементы первоначальной матрицы.

Исходно определено расстояние лишь между одноэлементными кластерами, но надо определять расстояния и между кластерами, содержащими более чем один элемент. Это можно сделать различными способами, и в зависимости от выбранного способа мы получают алгоритмы кластер анализа с различными свойствами. Можно, например, положить расстояние между кластером i + j и некоторым другим кластером k , равным среднему арифметическому из расстояний между кластерами i и k и кластерами j и k :

d i+j,k = ½ (d i k + d j k).

Но можно также определить d i+j,k как минимальное из этих двух расстояний:

d i+j,k = min (d i k + d j k).

Таким образом, описан первый шаг работы агломеративного иерархического алгоритма. Последующие шаги аналогичны.

Довольно широкий класс алгоритмов может быть получен, если для перерасчета расстояний использовать следующую общую формулу:

d i+j,k = A(w) min(d ik d jk) + B(w) max(d ik d jk), где

A(w) = , если d ik £ d jk

A(w) = , если d ik > d jk

B(w) = , если d i k £ d jk

B (w ) = , если d ik > d jk

где n i и n j - число элементов в кластерах i и j , а w – свободный параметр, выбор которого определяет конкретный алгоритм. Например, при w = 1 мы получаем, так называемый, алгоритм «средней связи», для которого формула перерасчета расстояний принимает вид:

d i+j,k =

В данном случае расстояние между двумя кластерами на каждом шаге работы алгоритма оказывается равным среднему арифметическому из расстояний между всеми такими парами элементов, что один элемент пары принадлежитк одному кластеру, другой - к другому.

Наглядный смысл параметра w становится понятным, если положить w ® ¥ . Формула пересчета расстояний принимает вид:

d i+j,k = min (d i ,k d jk)

Это будеттак называемый алгоритм «ближайшего соседа», позволяющий выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В данном случае расстояние между двумя кластерами на каждом шаге работы алгоритма оказывается равным расстоянию между двумя самыми близкими элементами, принадлежащими к этим двум кластерам.

Довольно часто предполагают, что первоначальные расстояния (различия) между группируемыми элементамизаданы. В некоторыхзадачах это действительно так. Однако, задаются только объекты и их характеристики и матрицу расстояний строят исходя из этих данных. В зависимости от того, вычисляются ли расстояния между объектами или между характеристиками объектов, используются разные способы.

В случае кластер анализа объектов наиболее часто мерой различия служит либо квадрат евклидова расстояния

(где x ih , x jh - значения h -го признака для i -го и j -го объектов, а m - число характеристик), либо само евклидово расстояние. Если признакам приписывается разный вес, то эти веса можно учесть при вычислении расстояния

Иногда в качестве меры различияиспользуется расстояние, вычисляемое по формуле:

которые называют: "хэмминговым", "манхэттенским" или "сити-блок" расстоянием.

Естественноймерой сходства характеристик объектов во многих задачах является коэффициент корреляции между ними

где m i ,m j , d i , d j - соответственно средние и среднеквадратичные отклонения для характеристик i и j . Мерой различия между характеристиками может служить величина1 - r . В некоторых задачахзнак коэффициента корреляции несуществен и зависит лишь отвыбора единицы измерения. В этом случае в качестве меры различиямежду характеристиками используется ô 1 - r i j ô

4. Число кластеров

Очень важным вопросом является проблема выбора необходимого числа кластеров. Иногда можно m число кластеров выбирать априорно. Однако в общем случае это число определяется в процессе разбиениямножества на кластеры.

Проводились исследования Фортьером и Соломоном, и было установлено, что число кластеров должно быть принято для достижения вероятности a того, что найдено наилучшее разбиение. Таким образом, оптимальное число разбиений является функцией заданной доли b наилучших или в некотором смысле допустимых разбиений во множествевсех возможных. Общее рассеяние будет тем больше, чем выше доля b допустимых разбиений. Фортьер и Соломон разработали таблицу, по которой можно найти число необходимых разбиений. S(a , b ) в зависимости от a и b (где a - вероятность того, что найдено наилучшее разбиение, b - доля наилучших разбиений в общем числе разбиений) Причем в качестве меры разнородности используется не мера рассеяния, а мера принадлежности, введенная Хользенгером и Харманом. Таблица значений S( a , b ) приводится ниже.

Таблица значений S( a , b )

b \ a

0.20

0.10

0.05

0.01

0.001

0.0001

0.20

8

11

14

21

31

42

0.10

16

22

29

44

66

88

0.05

32

45

59

90

135

180

0.01

161

230

299

459

689

918

0.001

1626

2326

3026

4652

6977

9303

0.0001

17475

25000

32526

55000

75000

100000

Довольно часто критерием объединения (числа кластеров) становится изменение соответствующей функции. Например, суммы квадратов отклонений:

Процессу группировки должно соответствовать здесь последовательное минимальное возрастание значения критерия E . Наличие резкого скачка в значении E можно интерпретировать как характеристику числа кластеров, объективно существующих в исследуемой совокупности.

Итак, второй способ определения наилучшего числа кластеров сводится к выявлению скачков, определяемых фазовым переходом от сильно связанного к слабосвязанному состоянию объектов.

5. Дендограммы

Наиболее известный метод представления матрицы расстояний или сходства основан на идее дендограммы или диаграммы дерева. Дендограмму можно определить как графическое изображение результатов процессапоследовательной кластеризации, которая осуществляется в терминах матрицы расстояний. С помощью дендограммы можно графически или геометрически изобразить процедуру кластеризации при условии, что эта процедура оперирует толькос элементами матрицы расстояний или сходства.

Существуетмного способов построения дендограмм. В дендограмме объектырасполагаются вертикально слева, результатыкластеризации – справа. Значения расстояний или сходства, отвечающие строению новых кластеров, изображаются по горизонтальной прямой поверх дендограмм.

Рис1

На рисунке 1 показан один из примеровдендограммы. Рис 1 соответствует случаю шести объектов ( n =6) и k характеристик (признаков). Объекты А и С наиболее близки и поэтому объединяются в один кластер на уровне близости, равном 0,9. Объекты D и Е объединяютсяпри уровне 0,8. Теперь имеем 4 кластера:

(А, С), ( F ), ( D , E ), ( B ) .

Далее образуются кластеры (А, С, F ) и ( E , D , B ) , соответствующие уровню близости, равному 0,7 и 0,6. Окончательно все объекты группируются в один кластер при уровне 0,5.

Вид дендограммы зависит от выбора меры сходстваили расстояния между объектоми кластером и метода кластеризации. Наиболее важным моментом является выбор меры сходства или меры расстояния между объектом и кластером.

Число алгоритмов кластерного анализа слишком велико. Все их можноподразделить на иерархическиеи неиерархические.

Иерархические алгоритмы связаны с построением дендограмм и делятся на:

а) агломеративные, характеризуемые последовательным объединениемисходных элементов и соответствующим уменьшением числа кластеров;

б) дивизимные (делимые), в которых число кластеров возрастает, начиная с одного, в результате чего образуется последовательностьрасщепляющих групп.

Алгоритмы кластерного анализа имеют сегодня хорошую программную реализацию, которая позволяет решить задачи самой большой размерности.

6. Данные

Кластерный анализ можно применять к интервальным данным, частотам, бинарным данным. Важно, чтобы переменные изменялись в сравнимых шкалах.

Неоднородность единиц измерения и вытекающая отсюда невозможность обоснованного выражения значений различных показателей в одном масштабе приводит к тому, что величина расстояний между точками, отражающими положение объектов в пространстве их свойств, оказывается зависящей от произвольно избираемого масштаба. Чтобы устранить неоднородность измерения исходных данных, все их значения предварительно нормируются, т.е. выражаются через отношение этих значенийк некоторой величине, отражающей определенные свойства данного показателя. Нормирование исходных данных для кластерного анализа иногда проводится посредством деления исходных величин на среднеквадратичное отклонение соответствующих показателей. Другой способ сводиться к вычислению, так называемого, стандартизованного вклада. Его еще называют Z -вкладом.

Z -вклад показывает, сколько стандартных отклонений отделяет данное наблюдение от среднего значения:

Где x i – значение данного наблюдения, – среднее, S – стандартное отклонение.

Среднее для Z -вкладов является нулевым и стандартное отклонение равно 1.

Стандартизация позволяет сравнивать наблюдения из различных распределений. Если распределение переменной является нормальным (или близким к нормальному), и средняя и дисперсия известны или оцениваются по большим выборным, то Z -вклад для наблюдения обеспечивает более специфическую информацию о его расположении.

Заметим, что методы нормирования означают признание всех признаков равноценными с точки зрения выяснения сходства рассматриваемых объектов. Уже отмечалось, что применительно к экономике признание равноценности различных показателей кажется оправданным отнюдь не всегда. Было бы, желательным наряду с нормированием придать каждому из показателей вес, отражающий его значимость в ходе установления сходств и различий объектов.

В этой ситуации приходится прибегать к способу определения весов отдельных показателей – опросу экспертов. Например, при решении задачи о классификации стран по уровню экономического развития использовались результаты опроса 40 ведущих московских специалистов по проблемам развитых стран по десятибалльной шкале:

обобщенные показатели социально-экономического развития – 9 баллов;

показатели отраслевого распределения занятого населения – 7 баллов;

показатели распространенности наемного труда – 6 баллов;

показатели, характеризующие человеческий элемент производительных сил – 6 баллов;

показатели развития материальных производительных сил – 8 баллов;

показатель государственных расходов – 4балла;

«военно-экономические» показатели – 3 балла;

социально-демографические показатели – 4 балла.

Оценки экспертов отличались сравнительно высокой устойчивостью.

Экспертные оценки дают известное основание для определения важности индикаторов, входящих в ту или иную группу показателей. Умножение нормированных значений показателей на коэффициент, соответствующий среднему баллу оценки, позволяет рассчитывать расстояния между точками, отражающими положение стран в многомерном пространстве, с учетом неодинакового веса их признаков.

Довольно часто при решенииподобных задач используют не один, а два расчета: первый, в котором все признаки считаются равнозначными, второй, где им придаются различные веса в соответствии со средними значениями экспертных оценок.

7. Применение кластерного анализа

Рассмотрим некоторые приложения кластерного анализа.

1. Деление стран на группы по уровню развития.

Изучались 65 стран по 31 показателю (национальный доход на душу населения, доля населения занятого в промышленности в %, накопления на душу населения, доля населения, занятого в сельском хозяйстве в %, средняя продолжительность жизни, число автомашин на 1 тыс. жителей, численность вооруженных сил на 1 млн. жителей, доля ВВП промышленности в %, доля ВВП сельского хозяйства в %, и т.д.)

Каждая из стран выступает в данном рассмотрении как объект, характеризуемый определенными значениями 31 показателя. Соответственно они могут быть представлены в качестве точек в 31-мерном пространстве. Такое пространство обычно называется пространством свойств изучаемых объектов. Сравнениерасстояния между этими точками будет отражать степень близости рассматриваемых стран, их сходство друг с другом. Социально-экономический смысл подобного понимания сходства означает, что страны считаются тем более похожими, чем меньше различия между одноименными показателями, с помощью которых они описываются.

Первый шаг подобного анализа заключается в выявлении пары народных хозяйств, учтенных в матрице сходства, расстояние между которыми является наименьшим. Это, очевидно, будут наиболее сходные, похожие экономики. В последующем рассмотрении обе эти страны считаются единой группой, единым кластером. Соответственно исходная матрица преобразуется так, что ее элементами становятся расстояния между всеми возможными парами уже не 65, а 64 объектами – 63 экономики и вновь преобразованного кластера – условного объединения двух наиболее похожих стран. Из исходной матрицы сходства выбрасываются строки и столбцы, соответствующие расстояниям от пары стран, вошедших в объедение, до всех остальных, но зато добавляются строка и столбец, содержащие расстояние между кластером, полученным при объединении и прочими странами.

Расстояние между вновь полученным кластером и странами полагается равным среднему из расстояний между последними и двумя странами, которые составляют новый кластер. Иными словами, объединенная группа стран рассматривается как целоес характеристиками, примерно равными средним из характеристик входящих в него стран.

Второй шаг анализа заключается в рассмотрении преобразованной таким путем матрицы с 64 строками и столбцами. Снова выявляется пара экономик, расстояние между которыми имеет наименьшее значение, и они, так же как в первом случае, сводятся воедино. При этом наименьшее расстояниеможет оказаться как между парой стран, таки между какой-либо странойи объединением стран, полученным на предыдущем этапе.

Дальнейшие процедуры аналогичны описанным выше: на каждом этапе матрица преобразуется так, что из нее исключаются два столбца и две строки, содержащие расстояние до объектов (пар стран или объединений – кластеров), сведенных воедино на предыдущей стадии; исключенные строки и столбцы заменяются столбцоми строкой, содержащими расстояния от новых объединений до остальных объектов; далее в измененной матрице выявляется пара наиболее близких объектов. Анализ продолжается до полного исчерпания матрицы (т. е. до тех пор, пока все страны не окажутся сведенными в одно целое). Обобщенные результаты анализа матрицы можно представить в виде дерева сходства (дендограммы), подобного описанному выше, с той лишь разницей, что дерево сходства, отражающее относительную близость всех рассматриваемых нами 65 стран, много сложнее схемы, в которой фигурирует только пять народных хозяйств. Это дерево в соответствиис числом сопоставляемых объектов включает 65 уровней. Первый (нижний) уровень содержит точки, соответствующие каждых стране в отдельности. Соединение двух этих точек на втором уровне показывает пару стран, наиболее близких по общему типу народных хозяйств. На третьем уровне отмечается следующее по сходству парное соотношение стран (как уже упоминалось, в таком соотношении может находиться либо новая пара стран, либо новая странаи уже выявленная пара сходных стран). И так далее до последнего уровня, на котором все изучаемые страны выступают как единая совокупность.

В результате применения кластерного анализа были получены следующие пять групп стран:

· афро-азиатская группа;

· латино-азиатская группа;

· латино-среднеземнаморская группа;

· группа развитых капиталистических стран (без США)

· США

Введение новых индикаторов сверх используемого здесь 31 показателя или замена их другими, естественно, приводят к изменению результатов классификации стран.

2. Деление стран по критерию близости культуры.

Как известно маркетинг должен учитывать культуру стран (обычаи, традиции, и т.д.).

Посредством кластеризации были получены следующие группы стран:

· арабские;

· ближневосточные;

· скандинавские;

· германоязычные;

· англоязычные;

· романские европейские;

· латиноамериканские;

· дальневосточные.

3. Разработка прогноза конъюнктуры рынка цинка.

Кластерный анализ играет важную рольна этапе редукции экономико-математической модели товарной конъюнктуры, способствуя облегчению и упрощению вычислительных процедур, обеспечению большей компактности получаемых результатов при одновременном сохранении необходимой точности. Применение кластерного анализа дает возможность разбить всю исходную совокупность показателей конъюнктуры на группы (кластеры) по соответствующим критериям, облегчая тем самым выбор наиболее репрезентативных показателей.

Кластерный анализ широко используется для моделирования рыночной конъюнктуры. Практически основное большинство задач прогнозирования опирается наиспользование кластерного анализа.

Например, задача разработки прогноза конъюнктуры рынка цинка.

Первоначально было отобрано 30 основных показателей мирового рынка цинка:

Х 1 - время

Показатели производства:

Х 2 - в мире

Х 4 - Европе

Х 5 - Канаде

Х 6 - Японии

Х 7 - Австралии

Показатели потребления:

Х 8 - в мире

Х 10 - Европе

Х 11 - Канаде

Х 12 - Японии

Х 13 - Австралии

Запасы цинка у производителей:

Х 14 - в мире

Х 16 - Европе

Х 17 - других странах

Запасы цинка у потребителей:

Х 18 - в США

Х 19 - в Англии

Х 10 - в Японии

Импорт цинковых руд и концентратов (тыс. тонн)

Х 21 - в США

Х 22 - в Японии

Х 23 - в ФРГ

Экспорт цинковых руд и концентратов (тыс. тонн)

Х 24 - из Канады

Х 25 - из Австралии

Импорт цинка (тыс. тонн)

Х 26 - в США

Х 27 - в Англию

Х 28 - в ФРГ

Экспорт цинка (тыс. Тонн)

Х 29 -из Канады

Х 30 - из Австралии

Для определения конкретныхзависимостей был использован аппарат корреляционно-регрессионногоанализа. Анализ связей производился на основе матрицы парных коэффициентов корреляции. Здесь принималась гипотеза о нормальном распределении анализируемых показателей конъюнктуры.Ясно, что r ij являются не единственно возможным показателем связи используемых показателей. Необходимость использования кластерного анализа связано в этой задачес тем, что число показателей влияющих нацену цинка очень велико. Возникает необходимость их сократить по целому ряду следующих причин:

а) отсутствие полных статистических данных по всем переменным;

б) резкое усложнение вычислительных процедур при введении в модель большого числа переменных;

в) оптимальное использование методов регрессионного анализа требует превышения числа наблюдаемых значений над числом переменных не менее, чем в 6-8 раз;

г) стремление к использованию в модели статистически независимых переменных и пр.

Проводить такой анализ непосредственно на сравнительно громоздкой матрице коэффициентов корреляции весьма затруднительно. С помощью кластерного анализа всю совокупность конъюнктурных переменных можно разбить на группы таким образом, чтобы элементы каждого кластера сильно коррелировали между собой, а представители разных групп характеризовались слабой коррелированностью.

Для решения этой задачи был применен один из агломеративных иерархических алгоритмов кластерного анализа. На каждом шаге число кластеров уменьшается на один за счет оптимального, в определенном смысле, объединения двух групп. Критерием объединения является изменение соответствующей функции. В качестве функции такой были использованы значения сумм квадратов отклонений вычисляемые по следующим формулам:

(j = 1, 2, …, m ),

где j - номер кластера, n - число элементов в кластере.

r ij -коэффициент парной корреляции.

Таким образом, процессу группировки должно соответствовать последовательное минимальное возрастание значения критерия E .

На первом этапе первоначальный массив данных представляется в виде множества, состоящего из кластеров, включающих в себя по одному элементу. Процесс группировки начинается с объединения такой пары кластеров, которое приводит к минимальному возрастанию суммы квадратов отклонений. Это требует оценки значений суммы квадратов отклонений для каждогоиз возможных объединений кластеров. На следующем этапе рассматриваются значения сумм квадратов отклонений уже для кластеров и т.д. Этот процесс будет остановлен на некотором шаге. Для этого нужно следить за величиной суммы квадратов отклонений. Рассматривая последовательность возрастающих величин, можно уловить скачок (один или несколько) в ее динамике, который можно интерпретировать как характеристику числа групп «объективно» существующих в исследуемойсовокупности. В приведенном примере скачки имели место при числе кластеров равном 7 и 5. Далее снижать число групп не следует, т.к. это приводит к снижению качества модели. После получения кластеров происходит выбор переменных наиболее важных в экономическом смысле и наиболее тесно связанных с выбранным критерием конъюнктуры - в данном случае с котировками Лондонской биржи металлов на цинк. Этот подход позволяет сохранить значительную часть информации, содержащейся в первоначальном наборе исходных показателей конъюнктуры.

, государственном управлении , филологии , антропологии , маркетинге , социологии , геологии и других дисциплинах. Однако универсальность применения привела к появлению большого количества несовместимых терминов, методов и подходов, затрудняющих однозначное использование и непротиворечивую интерпретацию кластерного анализа.

Энциклопедичный YouTube

  • 1 / 5

    Кластерный анализ выполняет следующие основные задачи:

    • Разработка типологии или классификации.
    • Исследование полезных концептуальных схем группирования объектов.
    • Порождение гипотез на основе исследования данных.
    • Проверка гипотез или исследования для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

    Независимо от предмета изучения применение кластерного анализа предполагает следующие этапы:

    • Отбор выборки для кластеризации. Подразумевается, что имеет смысл кластеризовать только количественные данные.
    • Определение множества переменных, по которым будут оцениваться объекты в выборке, то есть признакового пространства.
    • Вычисление значений той или иной меры сходства (или различия) между объектами.
    • Применение метода кластерного анализа для создания групп сходных объектов.
    • Проверка достоверности результатов кластерного решения.

    Можно встретить описание двух фундаментальных требований предъявляемых к данным - однородность и полнота. Однородность требует, чтобы все кластеризуемые сущности были одной природы, описывались сходным набором характеристик . Если кластерному анализу предшествует факторный анализ , то выборка не нуждается в «ремонте» - изложенные требования выполняются автоматически самой процедурой факторного моделирования (есть ещё одно достоинство - z-стандартизация без негативных последствий для выборки; если её проводить непосредственно для кластерного анализа, она может повлечь за собой уменьшение чёткости разделения групп). В противном случае выборку нужно корректировать.

    Типология задач кластеризации

    Типы входных данных

    В современной науке применяется несколько алгоритмов обработки входных данных. Анализ путём сравнения объектов, исходя из признаков, (наиболее распространённый в биологических науках) называется Q -типом анализа, а в случае сравнения признаков, на основе объектов - R -типом анализа. Существуют попытки использования гибридных типов анализа (например, RQ -анализ), но данная методология ещё должным образом не разработана.

    Цели кластеризации

    • Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй »).
    • Сжатие данных . Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.
    • Обнаружение новизны (англ. novelty detection ). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

    В первом случае число кластеров стараются сделать поменьше. Во втором случае важнее обеспечить высокую степень сходства объектов внутри каждого кластера, а кластеров может быть сколько угодно. В третьем случае наибольший интерес представляют отдельные объекты, не вписывающиеся ни в один из кластеров.

    Во всех этих случаях может применяться иерархическая кластеризация , когда крупные кластеры дробятся на более мелкие, те в свою очередь дробятся ещё мельче, и т. д. Такие задачи называются задачами таксономии . Результатом таксономии является древообразная иерархическая структура. При этом каждый объект характеризуется перечислением всех кластеров, которым он принадлежит, обычно от крупного к мелкому.

    Методы кластеризации

    Общепринятой классификации методов кластеризации не существует, но можно выделить ряд групп подходов (некоторые методы можно отнести сразу к нескольким группам и потому предлагается рассматривать данную типизацию как некоторое приближение к реальной классификации методов кластеризации) :

    1. Вероятностный подход . Предполагается, что каждый рассматриваемый объект относится к одному из k классов. Некоторые авторы (например, А. И. Орлов) считают, что данная группа вовсе не относится к кластеризации и противопоставляют её под названием «дискриминация», то есть выбор отнесения объектов к одной из известных групп (обучающих выборок).
    2. Подходы на основе систем искусственного интеллекта: весьма условная группа, так как методов очень много и методически они весьма различны.
    3. Логический подход. Построение дендрограммы осуществляется с помощью дерева решений.
    4. Теоретико-графовый подход.
    5. Иерархический подход. Предполагается наличие вложенных групп (кластеров различного порядка). Алгоритмы в свою очередь подразделяются на агломеративные (объединительные) и дивизивные (разделяющие). По количеству признаков иногда выделяют монотетические и политетические методы классификации.
      • Иерархическая дивизивная кластеризация или таксономия. Задачи кластеризации рассматриваются в количественной таксономии .
    6. Другие методы. Не вошедшие в предыдущие группы.
      • Статистические алгоритмы кластеризации
      • Ансамбль кластеризаторов
      • Алгоритмы семейства KRAB
      • Алгоритм, основанный на методе просеивания

    Подходы 4 и 5 иногда объединяют под названием структурного или геометрического подхода, обладающего большей формализованностью понятия близости . Несмотря на значительные различия между перечисленными методами все они опираются на исходную «гипотезу компактности »: в пространстве объектов все близкие объекты должны относиться к одному кластеру, а все различные объекты соответственно должны находиться в различных кластерах.

    Формальная постановка задачи кластеризации

    Пусть X {\displaystyle X} - множество объектов, Y {\displaystyle Y} - множество номеров (имён, меток) кластеров. Задана функция расстояния между объектами ρ (x , x ′) {\displaystyle \rho (x,x")} . Имеется конечная обучающая выборка объектов X m = { x 1 , … , x m } ⊂ X {\displaystyle X^{m}=\{x_{1},\dots ,x_{m}\}\subset X} . Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами , так, чтобы каждый кластер состоял из объектов, близких по метрике ρ {\displaystyle \rho } , а объекты разных кластеров существенно отличались. При этом каждому объекту x i ∈ X m {\displaystyle x_{i}\in X^{m}} приписывается номер кластера y i {\displaystyle y_{i}} .

    Алгоритм кластеризации - это функция a: X → Y {\displaystyle a\colon X\to Y} , которая любому объекту x ∈ X {\displaystyle x\in X} ставит в соответствие номер кластера y ∈ Y {\displaystyle y\in Y} . Множество Y {\displaystyle Y} в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации.

    В общем стоит отметить, что исторически сложилось так, что в качестве мер близости в биологии чаще используются меры сходства , а не меры различия (расстояния).

    В социологии

    При анализе результатов социологических исследований рекомендуется осуществлять анализ методами иерархического агломеративного семейства, а именно методом Уорда, при котором внутри кластеров оптимизируется минимальная дисперсия, в итоге создаются кластеры приблизительно равных размеров. Метод Уорда наиболее удачен для анализа социологических данных. В качестве меры различия лучше квадратичное евклидово расстояние, которое способствует увеличению контрастности кластеров. Главным итогом иерархического кластерного анализа является дендрограмма или «сосульчатая диаграмма». При её интерпретации исследователи сталкиваются с проблемой того же рода, что и толкование результатов факторного анализа - отсутствием однозначных критериев выделения кластеров. В качестве главных рекомендуется использовать два способа - визуальный анализ дендрограммы и сравнение результатов кластеризации, выполненной различными методами.

    Визуальный анализ дендрограммы предполагает «обрезание» дерева на оптимальном уровне сходства элементов выборки. «Виноградную ветвь» (терминология Олдендерфера М. С. и Блэшфилда Р. К. ) целесообразно «обрезать» на отметке 5 шкалы Rescaled Distance Cluster Combine, таким образом будет достигнут 80 % уровень сходства. Если выделение кластеров по этой метке затруднено (на ней происходит слияние нескольких мелких кластеров в один крупный), то можно выбрать другую метку. Такая методика предлагается Олдендерфером и Блэшфилдом.

    Теперь возникает вопрос устойчивости принятого кластерного решения. По сути, проверка устойчивости кластеризации сводится к проверке её достоверности. Здесь существует эмпирическое правило - устойчивая типология сохраняется при изменении методов кластеризации. Результаты иерархического кластерного анализа можно проверять итеративным кластерным анализом по методу k-средних. Если сравниваемые классификации групп респондентов имеют долю совпадений более 70 % (более 2/3 совпадений), то кластерное решение принимается.

    Проверить адекватность решения, не прибегая к помощи другого вида анализа, нельзя. По крайней мере, в теоретическом плане эта проблема не решена. В классической работе Олдендерфера и Блэшфилда «Кластерный анализ» подробно рассматриваются и в итоге отвергаются дополнительные пять методов проверки устойчивости:

    1. кофенетическая корреляция - не рекомендуется и ограниченна в использовании;
    2. тесты значимости (дисперсионный анализ) - всегда дают значимый результат;
    3. методика повторных (случайных) выборок, что, тем не менее, не доказывает обоснованность решения;
    4. тесты значимости для внешних признаков пригодны только для повторных измерений;
    5. методы Монте-Карло очень сложны и доступны только опытным математикам [ (англ. edge detection ) или распознавания объектов .
    6. Интеллектуальный анализ данных (англ. data mining) - кластеризация в Data Mining приобретает ценность тогда, когда она выступает одним из этапов анализа данных, построения законченного аналитического решения. Аналитику часто легче выделить группы схожих объектов, изучить их особенности и построить для каждой группы отдельную модель, чем создавать одну общую модель для всех данных. Таким приемом постоянно пользуются в маркетинге, выделяя группы клиентов, покупателей, товаров и разрабатывая для каждой из них отдельную стратегию.

Лучшие статьи по теме