Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех

Инфракрасный диапазон. Инфракрасный свет – практикум невидимо тёплого излучения

Для того, чтобы понять принцип работы инфракрасных излучателей, необходимо представлять себе суть такого физического явления как инфракрасное излучение.

Диапазон инфракрасного излучения и длина волны

Инфракрасное излучение - это разновидность электромагнитного излучения, занимающего в спектре электромагнитных волн диапазон от 0,77 до 340 мкм. При этом диапазон от 0,77 до 15 мкм считается коротковолновым, от 15 до 100 мкм - средневолновым, а от 100 до 340 - длинноволновым.

Коротковолновая часть спектра примыкает к видимому свету, а длинноволновая сливается с областью ультракоротких радиоволн. Поэтому инфракрасное излучение обладает как свойствами видимого света (распространяется прямолинейно, отражается, преломляется как и видимый свет), так и свойствами радиоволн (оно может проходить сквозь некоторые материалы, непрозрачные для видимого излучения).

Инфракрасные излучатели с температурой на поверхности от 700 С до 2500 С имеют длину волны 1,55-2,55 мкм и называются "светлыми" - по длине волны они ближе к видимому свету, излучатели с более низкой температурой поверхности имеют большую длину волны и называются "темными".

Источники инфракрасного излучения

Вообще говоря, любое тело, нагретое до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и может передавать эту энергию посредством лучистого теплообмена другим телам. Передача энергии происходит от тела с более высокой температурой к телу с более низкой температурой, при этом, разные тела имеют различную излучающую и поглощающую способность, которая зависит от природы двух тел, от состояния их поверхности и т.д.

Электромагнитное излучение обладает квантово-фотонным характером. При взаимодействии с веществом фотон поглощается атомами вещества, передавая им свою энергию. При этом возрастает энергия тепловых колебаний атомов в молекулах вещества, т.е. энергия излучения переходит в теплоту.

Суть лучистого отопления состоит в том, что горелка, являясь источником излучения, генерирует, формирует в пространстве и направляет тепловое излучение в зону обогрева. Оно попадает на ограждающие конструкции (пол, стены), технологическое оборудование, людей, находящихся в зоне облучения, поглощается ими и нагревает их. Поток излучения, поглощаясь поверхностями, одеждой и кожей человека, создает тепловой комфорт без повышения температуры окружающего воздуха. Воздух в обогреваемых помещениях, оставаясь практически прозрачным для инфракрасного излучения, нагревается за счет "вторичного тепла", т.е. конвекции от конструкций и предметов, нагретых излучением.

Свойства и применение инфракрасного излучения

Установлено, что воздействие инфракрасного радиационного отопления благоприятно сказывается на человеке. Если тепловое излучение с длиной волны больше 2 мкм воспринимается в основном кожным покровом с проведением образовавшейся тепловой энергии внутрь, то излучение с длиной волны до 1,5 мкм проникает через поверхность кожи, частично нагревает ее, достигает сети кровеносных сосудов и непосредственно повышает температуру крови. При определенной интенсивности теплового потока его воздействие вызывает приятное тепловое ощущение. При лучистом обогреве человеческое тело отдает большую часть избыточного тепла путем конвекции окружающему воздуху, имеющему более низкую температуру. Такая форма теплоотдачи действует освежающе и благоприятно влияет на самочувствие.

В нашей стране изучение технологии инфракрасного отопления ведется с 30-х годов как применительно к сельскому хозяйству, так и для промышленности.

Проведенные медико-биологические исследования позволили установить, что системы инфракрасного отопления более полно отвечают специфике животноводческих помещений, чем конвективные системы центрального или воздушного отопления. Прежде всего, за счет того, что при инфракрасном обогреве температура внутренних поверхностей ограждений, особенно пола, превышает температуру воздуха в помещении. Этот фактор благоприятно сказывается на тепловом балансе животных, исключая интенсивные потери тепла.

Инфракрасные системы, работающие совместно с системами естественной, вентиляции обеспечивают снижение относительной влажности воздуха до нормативных значений (на свинофермах и в телятниках до 70-75% и ниже).

В результате работы этих систем температурно-влажностный режим в помещениях достигает благоприятных параметров.

Применение систем лучистого отопления для сельскохозяйственных зданий позволяет не только создавать необходимые условия микроклимата, но и интенсифицировать производство. Во многих хозяйствах Башкирии (колхоз им. Ленина, колхоз им. Нуриманова) значительно увеличилось получение приплода после внедрения инфракрасного отопления (увеличение опороса в зимний период в 4 раза), возросла сохранность молодняка (с 72,8% до 97,6%).

В настоящее время система инфракрасного отопления установлена и отработала уже один сезон на предприятии "Чувашский бройлер" в пригороде г. Чебоксары. По отзывам руководителей хозяйства, в период минимальных зимних температур -34-36 С система работала бесперебойно и обеспечивала требуемое тепло для выращивания птицы на мясо (напольное содержание) в период 48 дней. В настоящее время ими рассматривается вопрос об оборудовании инфракрасными системами остальных птичников.

Уильям Гершель впервые заметил, что за красным краем полученного с помощью призмы спектра Солнца есть невидимое излучение, вызывающее нагрев термометра. Это излучение стали позднее называть тепловым или инфракрасным.

Ближнее ИК-излучение очень похоже на видимый свет и регистрируется такими же инструментами. В среднем и дальнем ИК используются болометры, отмечающие изменения.

В среднем ИК-диапазоне светит вся планета Земля и все предметы на ней, даже лед. За счет этого Земля не перегревается солнечным теплом. Но не всё ИК-излучение проходит через атмосферу. Есть лишь несколько окон прозрачности, остальное излучение поглощается углекислым газом, водяным паром, метаном, озоном и другими парниковыми газами, которые препятствуют быстрому остыванию Земли.

Из-за поглощения в атмосфере и теплового излучения предметов телескопы для среднего и дальнего ИК выносят в космос и охлаждают до температуры жидкого азота или даже гелия.

ИК-диапазон - один из самых интересных для астрономов. В нем светит космическая пыль, важная для образования звезд и эволюции галактик. ИК-излучение лучше видимого проходит через облака космической пыли и позволяет видеть объекты, недоступные наблюдению в других участках спектра.

Источники

Фрагмент одного из так называемых Глубоких полей «Хаббла» . В 1995 году космический телескоп в течение 10 суток накапливал свет, приходящий с одного участка неба. Это позволило увидеть чрезвычайно слабые галактики, расстояние до которых составляет до 13 млрд световых лет (менее одного миллиарда лет от Большого взрыва). Видимый свет от таких далеких объектов испытывает значительное красное смещение и становится инфракрасным.

Наблюдения велись в области, далекой от плоскости галактики, где видно относительно мало звезд. Поэтому большая часть зарегистрированных объектов - это галактики на разных стадиях эволюции.

Гигантская спиральная галактика, обозначаемая также как M104, расположена в скоплении галактик в созвездии Девы и видна нам почти с ребра. Она обладает огромным центральным балджем (шарообразное утолщение в центре галактики) и содержит около 800 млрд звезд - в 2-3 раза больше, чем Млечный Путь.

В центре галактики находится сверхмассивная черная дыра с массой около миллиарда масс Солнца. Это определено по скоростям движения звезд вблизи центра галактики. В инфракрасном диапазоне в галактике отчетливо просматривается кольцо газа и пыли, в котором активно рождаются звезды.

Приемники

Главное зеркало диаметром 85 см изготовлено из бериллия и охлаждается до температуры 5,5 К для снижения собственного инфракрасного излучения зеркала.

Телескоп был запущен в августе 2003 года по программе четырех великих обсерваторий NASA , включающей:

  • гамма-обсерваторию «Комптон» (1991–2000, 20 кэВ -30 ГэВ ), см. Небо в гамма-лучах с энергией 100 МэВ ,
  • рентгеновскую обсерваторию «Чандра» (1999, 100 эВ -10 кэВ ),
  • космический телескоп «Хаббл» (1990, 100–2100 нм ),
  • инфракрасный телескоп «Спитцер» (2003, 3–180 мкм ).

Ожидается, что срок службы телескопа «Спитцер» составит около 5 лет. Свое название телескоп получил в честь астрофизика Лаймана Спитцера (1914–97), который в 1946 году, задолго до запуска первого спутника, опубликовал статью «Преимущества для астрономии внеземной обсерватории», а спустя 30 лет убедил NASA и американский Конгресс начать разработку космического телескопа «Хаббл».

Обзоры неба

Небо в ближнем инфракрасном диапазоне 1–4 мкм и в среднем инфракрасном диапазоне 25 мкм (COBE/DIRBE)

В ближнем инфракрасном диапазоне Галактика просматривается еще более отчетливо, чем в видимом.

А вот в среднем ИК-диапазоне Галактика едва видна. Наблюдениям сильно мешает пыль, находящаяся в Солнечной системе. Она расположена вдоль плоскости эклиптики, которая наклонена к плоскости Галактики под углом около 50 градусов.

Оба обзора получены инструментом DIRBE (Diffuse Infrared Background Experiment) на борту спутника COBE (Cosmic Background Explorer). В ходе этого эксперимента, начатого в 1989 году, были получены полные карты инфракрасной яркости неба в диапазоне от 1,25 до 240 мкм .

Земное применение

В основе прибора лежит электронно-оптический преобразователь (ЭОП), позволяющий значительно (от 100 до 50 тысяч раз) усиливать слабый видимый или инфракрасный свет.

Объектив создает изображение на фотокатоде, из которого, как и в случае ФЭУ , выбиваются электроны. Далее они разгоняются высоким напряжением (10–20 кВ ), фокусируются электронной оптикой (электромагнитным полем специально подобранной конфигурации) и падают на флуоресцентный экран, подобный телевизионному. На нем изображение рассматривают в окуляры.

Разгон фотоэлектронов дает возможность в условиях низкой освещенности использовать для получения изображения буквально каждый квант света, однако в полной темноте требуется подсветка. Чтобы не выдать присутствие наблюдателя, для этого пользуются прожектором ближнего ИК-диапазона (760–3000 нм ).

Существуют также приборы, которые улавливают собственное тепловое излучение предметов в среднем ИК-диапазоне (8–14 мкм ). Такие приборы называются тепловизорами, они позволяют заметить человека, животное или нагретый двигатель за счет их теплового контраста с окружающим фоном.

Вся энергия, потребляемая электрическим обогревателем, в конечном счете, переходит в тепло. Значительная часть тепла уносится воздухом, который соприкасается с горячей поверхностью, расширяется и поднимается вверх, так что обогревается в основном потолок.

Во избежание этого обогреватели снабжают вентиляторами, которые направляют теплый воздух, например, на ноги человека и способствуют перемешиванию воздуха в помещении. Но есть и другой способ передачи тепла окружающим предметам: инфракрасное излучение обогревателя. Оно тем сильнее, чем горячее поверхность и больше ее площадь.

Для увеличения площади радиаторы делают плоскими. Однако при этом температура поверхности не может быть высокой. В других моделях обогревателей используется спираль, разогреваемая до нескольких сотен градусов (красное каление), и вогнутый металлический рефлектор, который создает направленный поток инфракрасного излучения.

Инфракрасный свет визуально недоступен зрению человека. Между тем длинные инфракрасные волны воспринимаются человеческим организмом как тепло. Некоторыми свойствами видимого света обладает инфракрасный свет. Излучение этой формы поддаётся фокусировке, отражается и поляризуется. Теоретически ИК-свет больше трактуется как инфракрасная радиация (ИР). Космическая ИР занимает спектральный диапазон электромагнитного излучения 700 нм — 1 мм. ИК-волны длиннее волн видимого света и короче радиоволн. Соответственно, частоты ИР выше частот микроволн и ниже частот видимого света. Частота ИР ограничена диапазоном 300 ГГц — 400 ТГц.

Инфракрасные волны удалось обнаружить британскому астроному Уильяму Гершелю . Открытие было зарегистрировано в 1800 году. Используя стеклянные призмы в своих опытах, учёный таким способом исследовал возможности разделения солнечного света на отдельные компоненты.

Когда Уильяму Гершелю пришлось измерять температуру отдельных цветов, обнаружился фактор увеличения температуры при последовательном прохождении следующего ряда:

  • фиолет,
  • синька,
  • зелень,
  • желток,
  • оранж,
  • красный.

Волновой и частотный диапазон ИК-радиации

Исходя из длины волны, учёные условно делят инфракрасное излучение на несколько спектральных частей. При этом нет единого определения границ каждой отдельной части.

Шкала электромагнитного излучения: 1 — радиоволны; 2 — микроволны; 3 — ИК-волны; 4 — видимый свет; 5 — ультрафиолет; 6 — лучи x-ray; 7 — гамма лучи; В — диапазон длин волн; Э — энергетика

Теоретически обозначены три волновых диапазона:

  1. Ближний
  2. Средний
  3. Дальний

Ближний ИК-диапазон отмечен длинами волн, приближенных до конечной части спектра видимого света. Примерный расчётный отрезок волны здесь обозначен длиной: 750 — 1300 нм (0,75 — 1,3 мкм). Частота излучения составляет примерно 215-400 Гц. Короткий ИК-диапазон излучат минимум тепла.

Средний ИК-диапазон (промежуточный), охватывает длины волн 1300-3000 нм (1,3 — 3 мкм). Частоты здесь измеряются диапазоном 20-215 ТГц. Уровень излучаемого тепла относительно невысок.

Дальний ИК-диапазон наиболее близок к диапазону микроволн. Расклад: 3-1000 мкм. Частотный диапазон 0,3-20 ТГц. Эту группу составляют короткие длины волн на максимальном частотном отрезке. Здесь излучается максимум тепла.

Применение инфракрасной радиации

ИК-лучам нашлось применение в различных сферах. Среди наиболее известных устройств — , тепловизоры, оборудование ночного видения и т.п. Коммуникационным и сетевым оборудованием ИК-свет используется в рамках проводных и беспроводных операций.

Пример работы электронного прибора — тепловизора, принцип действия которого основан на использовании инфракрасного излучения. И это лишь отдельно взятый пример из множества других

Пульты дистанционного управления оснащаются системой ИК-связи ближнего действия, где сигнал передаётся через ИК-светодиоды. Пример: привычная бытовая техника – телевизоры, кондиционеры, проигрыватели. Инфракрасным светом передаются данные по волоконно-оптическим кабельным системам.

Кроме того, излучение ИК-диапазона активно используется исследовательской астрономией для изучения космоса. Именно благодаря ИК-радиации удаётся обнаруживать космические объекты, невидимые глазу человека.

Малоизвестные факты, связанные с ИК-светом

Глаза человека действительно не могут видеть инфракрасные лучи. Но «видеть» их способна кожа тела человека, реагирующая на фотоны, а не только на тепловое излучение.

Поверхность кожи фактически выступает «глазным яблоком». Если солнечным днём выйти на улицу, закрыть глаза и протянуть к небу ладони, без особого труда можно обнаружить месторасположение солнца.

Зимой в комнате, где температура воздуха составляет 21-22ºС, будучи тепло одетыми (свитер, брюки). Летом в той же комнате, при той же температуре, люди также ощущают комфорт, но в более лёгкой одежде (шорты, футболка).

Объяснить сей феномен просто: несмотря на одинаковую температуру воздуха, стены и потолок помещения летом излучают в большем количестве волны дальнего ИК-диапазона, несомые солнечным светом (FIR – Far Infrared). Поэтому телом человека при одинаковых температурах, летом воспринимается больше тепла.

ИК-тепло воспроизводится любым живым организмом и неживым предметом. На экране тепловизора этот момент отмечается более чем отчётливо

Пары людей, спящие в одной кровати, непроизвольно являются передатчиками и приемниками FIR-волн по отношению друг к другу. Если человек находится в кровати один, он действует как передатчик FIR-волн, но уже не получает такие же волны в ответ.

Когда люди беседуют друг с другом, они непроизвольно отправляют и получают вибрации FIR-волн один от другого. Дружеские (любовные) объятия также активируют передачу FIR-излучения между людьми.

Как воспринимает ИК-свет природа?

Люди не в состоянии видеть световые лучи ИК-диапазона, но змеи семейства гадюковых или виперовых (например, гремучие) имеют сенсорные «впадины», которые используются для получения изображения в инфракрасном свете.

Это свойство позволяет змеям в полной темноте обнаруживать теплокровных животных. Змеи с двумя сенсорными «впадинами», как предполагается наукой, имеют некоторое восприятие глубины инфракрасного диапазона.

Свойства ИК змеи: 1, 2 — чувствительные зоны сенсорной впадины; 3 — мембранная впадина; 4 — внутренняя полость; 5 — MG волокно; 6 — наружная полость

Рыба успешно использует свет ближней области спектра (NIR – Near Infrared) для захвата добычи и для ориентации в акватории водоёмов. Это чувство NIR помогает рыбе безошибочно ориентироваться в условиях слабого освещения, в темноте либо в мутной воде.

Инфракрасное излучение играет важную роль для формирования погоды и климата Земли, также как солнечный свет. Общая масса солнечного света, поглощаемого Землей, в равном количестве ИК-излучения должна перемещаться от Земли обратно в космос. Иначе неизбежно глобальное потепление или глобальное похолодание.

Очевидна причина, по которой воздух быстро охлаждается сухой ночью. Низкий уровень влажности и отсутствие облаков на небе открывают свободный путь ИК-радиации. Инфракрасные лучи быстрее выходят в космическое пространство и, соответственно, быстрее уносят тепло.

Значительная часть , приходящая к Земле – это именно инфракрасный свет. Любой природный организм или предмет обладает температурой, а это значит — выделяет ИК-энергию. Даже предметы, априори являющиеся холодными (например, кубики льда), излучают ИК-свет.

Технический потенциал инфракрасной зоны

Технический потенциал ИК-лучей безграничен. Примеров масса. Инфракрасное отслеживание (самонаведение) применяется в системах пассивного управления ракетами. Электромагнитное излучение от цели, получаемое в инфракрасной части спектра, используется в этом случае.

Систем отслеживания цели: 1, 4 — камера сгорания; 2, 6 — относительно длинный выхлоп пламени; 5 — холодный поток, обходящий горячую камеру; 3, 7 — назначенная важная ИК сигнатура

Спутники погоды, оборудованные сканирующими радиометрами, производят тепловые изображения, которые затем позволяют аналитической методикой определять высоты и типы облаков, рассчитывать температуру суши и поверхностных вод, определять особенности поверхности океана.

Инфракрасное излучение является наиболее распространенным способом дистанционного управления различными приборами. На базе технологии FIR разрабатываются и выпускаются множество продуктов. Особо здесь отличились японцы. Вот лишь несколько примеров, популярных в Японии и по всему миру:

  • специальные накладки и обогреватели FIR;
  • пластины FIR для сохранения рыбы и овощей свежими долгое время;
  • керамическая бумага и керамика FIR;
  • тканевые FIR перчатки, куртки, автомобильные сиденья;
  • парикмахерский FIR-фен, снижающий повреждение волос;

Инфракрасная рефлектография (арт-консервация) применяется для изучения картин, помогает выявить лежащие в основе слои, не разрушая структуры. Этот приём, помогает обнаружить детали, скрытые под рисунком художника.

Таким способом определяется, является ли текущая картина оригинальным художественным произведением или всего лишь профессионально сделанной копией. Определяются также изменения, связанные с реставрационной работой над произведениями искусства.

ИК-лучи: влияние на здоровье людей

Благоприятное воздействие солнечного света на здоровье человека подтверждено научно. Однако чрезмерное пребывание под солнечным излучением потенциально опасно. Солнечный свет содержит ультрафиолетовые лучи, действие которых сжигает кожу тела человека.

Инфракрасные сауны массового пользования широко распространены в Японии и Китае. И тенденция на развитие этого способа оздоровления только усиливается

Между тем инфракрасное излучение дальнего диапазона волн обеспечивает все преимущества для здоровья, получаемые от естественного солнечного света. При этом полностью исключается опасное воздействие солнечной радиации.

Применением технологии воспроизводства ИК-лучей, достигается полный контроль температуры (), неограниченный солнечный свет. Но это далеко не все известные факты преимуществ инфракрасного излучения:

  • Инфракрасные лучи дальнего диапазона укрепляют сердечно-сосудистую систему, стабилизируют сердечный ритм, увеличивают сердечный выброс, уменьшая при этом диастолическое артериальное давление.
  • Стимуляция сердечно-сосудистой функции инфракрасным светом дальнего диапазона — идеальный способ поддержания в норме сердечно-сосудистой системы. Есть опыт американских астронавтов во время длительного космического полета.
  • ИК-лучи дальнего инфракрасного диапазона с температурой выше 40°C ослабляют и в конечном итоге убивает раковые клетки. Этот факт подтвержден Американской онкологической ассоциацией и Национальным институтом рака.
  • Инфракрасные сауны часто используются в Японии и Корее (терапия гипертермии или Waon-терапия) для лечения от сердечно-сосудистых заболеваний, особенно в части хронической сердечной недостаточности и периферических артериальных заболеваний.
  • Результаты исследований, опубликованные в журнале «Нейропсихиатрическая болезнь и лечение », показывают инфракрасные лучи как «медицинский прорыв» в лечении черепно-мозговых травм.
  • Инфракрасная сауна считается в семь раз более эффективной при выводе из организма тяжелых металлов, холестерина, спирта, никотина, аммиака, серной кислоты и других токсинов.
  • Наконец, FIR-терапия в Японии и Китае вышла на первое место среди эффективных способов лечения астмы, бронхита, простуды, гриппа, синусита. Отмечено, что FIR-терапия убирает воспаления, отеки, слизистые закупорки.

Инфракрасный свет и продолжительность жизни 200 лет

Умеем делать? Не-а.

Мы все привыкли к тому, что цветы красные, черные поверхности не отражают свет, кока-кола непрозрачная, горячим паяльником нельзя ничего осветить как лампочкой, а фрукты можно легко отличить по их цвету. Но давайте представим на минутку, что мы может видеть не только видимый диапазон(хи-хи), но и ближний инфракрасный. Ближний инфракрасный свет - это вовсе не то, что можно увидеть в тепловизоре . Он скорее ближе в видимому свету, чем к тепловому излучению. Но у него есть ряд интересных особенностей - часто совершенно непрозрачные в видимом диапазоне предметы отлично просвечиваются в инфракрасном свете - пример на первой фотографии.
Черная поверхность плитки прозрачна для ИК, и с помощью камеры, у которой снят с матрицы фильтр можно рассмотреть часть платы и нагревательный элемент.

Для начала - небольшое отступление. То, что мы называем видимым светом - всего лишь узкая полоска электромагнитного излучения .
Вот, например я упер с википедии такую картинку:

Мы просто не видим ничего кроме этой маленькой части спектра. И фотоаппараты, которые делают люди - изначально кастрированы, чтобы добиться похожести фотоснимка и человеческого зрения. Матрица фотоаппарата способна видеть инфракрасный спектр, но специальным фильтром(он называется Hot-mirror) эта возможность убирается - иначе снимки будут выглядеть несколько непривычно для человеческого глаза. А вот если этот фильтр убрать…

Камера

Подопытным выступил китайский телефон, который изначально предназначался для обзора. К сожалению, выяснилось что радиочасть у него жестоко глючит - то принимает, то не принимает звонки. Само-собой, писать я про него не стал, но китайцы не захотели ни выслать замену, ни забрать этот. Так он остался у меня.
Разбираем телефон:

Вытаскиваем камеру. Паяльником и скальпелем аккуратно отделяем фокусировочный механизм(сверху) от матрицы.

На матрице должно быть тонкое стеклышко, возможно с зеленоватым или красноватым отливом. Если там его не - посмотрите на часть с «объективом». Если нет и там, то скорее всего все плохо - оно напылено на матрицу или на одну из линз, и снять ее будет более проблематично, чем найти нормальную камеру.
Если оно есть - нам надо его как можно более аккуратно снять, не повредив матрицу. У меня оно треснуло при этом, и пришлось долго выдувать осколки стекла с матрицы.

К сожалению, я потерял свои фотки, поэтому покажу фотку irenica из ее блога , которая делала тоже самое, но с веб-камерой.

Вот тот осколок стекла в углу - как раз и есть фильтр. Был фильтр.

Собираем все обратно, учитывая то, что при изменении зазора между объективом и матрицей камера не сможет правильно сфокусироваться - у вас получится или близорукая, или дальнозоркая камера. Мне потребовалось три раза собрать-разобрать камеру, чтобы добиться корректно работы механизма автофокуса.

Вот теперь можно окончательно собрать телефон, и начать исследовать этот новый мир!

Краски и вещества

Кока-кола внезапно стала полупрозрачной. Сквозь бутылку проникает свет с улицы, а через стакан видны даже предметы в комнате.

Плащ из черного стал розовым! Ну, кроме пуговиц.

Черная часть отвертки тоже посветлела. А вот у телефона эта участь постигла только кольцо джойстика, остальная часть покрыта другой краской, которая ИК не отражает. Так же как и пластик док-станции для телефона на заднем плане.

Таблетки из зеленых превратились в сиреневые.

Оба кресла в офисе тоже превратились из готично-черных в непонятные цветные.

Искусственная кожа осталась черной, а ткань - оказалось розовой.

Рюкзаку(он есть на заднем плане предыдущей фотки) стало еще хуже - он практически весь стал сиреневым.

Как и сумка для фотоаппарата. И обложка электронной книги

Коляска из синий превратилась в ожидаемо-фиолетовую. А световозвращающая нашивка, хорошо видимая в обычную камеру совсем не видна в ИК.

Красная краска, как близкая к нужной нам части спектра, отражая красный свет, захватывает и часть ИК. В итоге красный цвет заметно светлеет.

Причем таким свойством обладает все красная краска, что я замечал.

Огонь и температура

Еле тлеющая сигарета выглядит в ИК как очень яркая точка. Стоят ночью люди на остановке с сигаретами - а их кончики освещают им лица.

Зажигалка, свет которой на обычной фотографии вполне сравним с фоновым освещением в ИК режиме перекрыла жалкие потуги фонарей на улице. На фотографии даже не видно фона - умный фотоаппарат отработал изменение яркости, уменьшив экспозицию.

Паяльник при разогреве светится как небольшая лампочка. А в режиме поддержания температуры имеет нежно-розовый свет. А еще говорят что пайка не для девушек!

Горелка выглядит практически одинаково - ну разве что факел чуть дальше(на конце температура падает довольно быстро, и на определенном этапе уже перестает светить в видимом свете, но еще светит в ИК).

А вот если нагреть горелкой стеклянную палочку - стекло начнет светиться в ИК довольно ярко, и палочка будет выступать волноводом(яркий кончик)

Причем палочка будет светиться довольно долго и после прекращения нагрева

А фен термовоздушной станции вообще выглядит как фонарик с сеточкой.

Лампы и свет

Буква М на входе в метро горит гораздо ярче - в ней все еще используются лампы накаливания. А вот вывеска с название станции почти не изменила яркость - значит там люминесцентные лампы.

Двор ночью выглядит немного странно - сиреневая трава и гораздо светлее. Там, где камера в видимом диапазоне уже не справляется и вынуждена повышать исо(зернистость в верхней части), камере без ИК фильтра хватает света с запасом.

На этой фотографии получилась забавная ситуация - одно и то же дерево освещают два фонаря с разными лампами - слева лампой НЛ (оранжевая уличная), а справа - светодиодной. У первой в спектре излучения есть ик, и поэтому на фотографии листва под ней выглядит светлофиолетовой.

А у светодиодной нет ИК, а только видимый свет(поэтому лампы на светодиодах более энергоэффективны - энергия не тратится на излучение ненужного излучения, которое человек все равно не увидит). Поэтому листве приходится отражать то, что есть.

А если посмотреть на дом вечером, то можно заметить, что разные окна имеют разный оттенок - одни ярко-фиолетовые, а другие желтые или белые. В тех квартирах, чьи окна светятся фиолетовым(голубая стрелка) до сих пор используют лампы накаливания - горячая спираль светит всем подряд равномерно по всему спектру, захватывая и УФ и ИК диапазон. В подъездах используются энергосберегающие лампы холодного белого света(зеленая стрелка), а в части квартир - люминесцентные теплого света(желтая стрелка).

Восход. Просто восход.

Закат. Просто закат. Интенсивности солнечного света недостаточно для тени, а вот в инфракрасном диапазоне(может из-за разного преломления света с разной длинной волны, или из-за проницаемости атмосферы) тени видны отлично.

Занимательно. У нас в коридоре одна лампа сдохла и свет еле-еле, а вторая - нет. В инфракрасном свете наоборот - дохлая лампа светит гораздо ярче, чем живая.

Домофон. Точнее, штука рядом с ним, которая с камерами и подсветкой, которая включается в темноте. Она такая яркая, что видна и на обычную камеру, но для инфракрасной - это почти прожектор.

Подсветку можно включить и днем, закрыв пальцем датчик освещения.

Подсветка видеонаблюдения. У самой камеры подсветки не было, поэтому ее сколхозили из говна и палок. Она не очень яркая, потому что снята днем.

Живая природа

Волосатый киви и зеленый лайм по цвету почти не отличаются друг от друга.

Зеленые яблоки стали желтыми, а красные - ярко-сиреневыми!

Белые перцы стали желтыми. А привычные зеленый огурцы - каким-то инопланетным фруктом.

Яркие цветки стали практически однотонными:

Цветок почти не отличается по цвету от окружающей травы.

Да и яркие ягоды на кусте стало очень трудно увидеть в листве.

Да что ягоды - даже разноцветная листва стала однотонной.

Короче, выбрать фрукты по их цвету уже не получится. Придется спрашивать продавца, у него-то нормальное зрение.

Но почему на фотографиях все розовое?

Для ответа на этот вопрос нам придется вспомнить строение матрицы фотоаппарата. Я опять спер картинку из википедии.

Это фильтр байера - массив фильтров окрашенных в три разных цвета, расположенных над матрицей. Матрица воспринимает весь спектр одинаково, и только фильтры помогают построить полноцветную картинку.
Но инфракрасный спектр фильтры пропускают неодинаково - синие и красные больше, а зеленые меньше. Камера думает, что вместо инфракрасного излучения на матрицу попадает обычный свет и пытается формировать цветную картинку. На фотографиях, где яркость ИК-излучения минимальна обычные цвета еще пробиваются - на фотографиях можно заметить оттенки цветов. А там, где яркость большая, например на улице под ярким солнцем - ИК попадает на матрицу именно в той пропорции, которую пропускают фильтры, и которое образует розовый или фиолетовый цвет, забивая своей яркостью всю остальную цветовую информацию.
Если фотографировать с надетым на объектив фильтром - пропорция цветов получается другой. Например вот такой:

Эту картинку я нашел в сообществе ru-infrared.livejournal.com
Там же еще куча картинок снятых в инфракрасном диапазоне. Зелень на них белая потому, что ББ выставляется как раз по листве.

Но почему растения получаются такими яркими?

На самом деле, этот вопрос состоит из двух - почему зелень выглядит ярко и почему фрукты яркие.
Зелень яркая потому что в инфракрасной части спектра поглощение минимально(а отражение - максимально, что и показывает график):

Виновен в этом хлорофил. Вот его спектр поглощения:

Скорее всего это связано с тем, что растение защищается от высокоэнергетического излучения, подстраивая спектры поглощения таким образом, чтобы получить и энергию для существования и не быть засушенным от слишком щедрого солнца.

А это спектр излучения солнца(точнее, той части солнечного спектра, который достигает земной поверхности):

А почему ярко выглядит фрукты?

У плодов в кожуре зачастую нет хлорофилла, но тем не менее - они отражают ИК. Ответственно за это вещество, которое называется эпикутикулярный воск - тот самый белый налет на огурцах и сливах. Кстати, еспи погуглить «белый налет на сливах», то результатами будет что угодно, но только не это.
Смысл в этом примерно такой же - надо и окраску сохранить, которая может быть критична для выживания, и не дать солнцу высушить плод еще на дереве. Сушеный чернослив на деревьях это, конечно, отлично, но немного не вписывается в жизненные планы растения.

Но блин, почему рака-богомола?

Сколько я не искал, какие животные видят инфракрасный диапазон, мне попадались только раки-богомолы(ротоногие). Вот такие лапочки:

Кстати, если вы не хотите пропустить эпопею с чайником или хотите увидеть все новые посты нашей компании, вы можете подписаться на на странице компании (кнопка «подписаться»)

Теги: Добавить метки

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

Лучшие статьи по теме