Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех
  • Главная
  • Планшеты
  • В чем измеряется 1 космическая скорость. Жизнь замечательных имен

В чем измеряется 1 космическая скорость. Жизнь замечательных имен

Если и некоторому телу сообщить скорость, равную первой космической скорости, то оно не упадет на Землю, а станет искусственным спутником, движущимся по околоземной круговой орбите. Напомним, что эта скорость должна быть перпендикулярна направлению к центру Земли и равна по величине
v I = √{gR} = 7,9 км/с ,
где g = 9,8 м/с 2 − ускорение свободного падения тел у поверхности Земли, R = 6,4 × 10 6 м − радиус Земли.

А может ли тело и вовсе порвать цепи тяготения, «привязывающие» его к Земле? Оказывается, может, но для этого его нужно «бросить» с еще большей скоростью. Минимальную начальную скорость, которую необходимо сообщить телу у поверхности Земли, чтобы оно преодолело земное притяжение, называют второй космической скоростью. Найдем ее значение v II .
 При удалении тела от Земли сила притяжения совершает отрицательную работу, в результате чего кинетическая энергия тела уменьшается. Одновременно с этим уменьшается и сила притяжения. Если кинетическая энергия упадет до нуля до того, как станет равной нулю сила притяжения, тело вернется обратно на Землю. Чтобы этого не произошло, нужно, чтобы кинетическая энергия сохранялась отличной от нуля до тех пор, пока сила притяжения не обратится в нуль. А это может произойти лишь на бесконечно большом расстоянии от Земли.
 Согласно теореме о кинетической энергии, изменение кинетической энергии тела равно работе действующей на тело силы. Для нашего случая можно записать:
0 − mv II 2 /2 = A ,
или
mv II 2 /2 = −A ,
где m − масса брошенного с Земли тела, A − работа силы притяжения.
 Таким образом, для вычисления второй космической скорости нужно найти работу силы притяжения тела к Земле при удалении тела от поверхности Земли на бесконечно большое расстояние. Как это ни удиви-тельно, но работа эта вовсе не бесконечно большая, несмотря на то, что перемещение тела как будто бы бесконечно велико. Причина тому − уменьшение силы притяжения по мере удаления тела от Земли. Чему же равна работа силы притяжения?
 Воспользуемся той особенностью, что работа силы тяготения не зависит от формы траектории движения тела, и рассмотрим самый простой случай − тело удаляется от Земли по линии, проходящей через центр Земли. На приведенном здесь рисунке изображен Земной шар и тело массой m , которое движется вдоль направления, указанного стрелкой.

 Найдем сначала работу А 1 , которую совершает сила притяжения на очень малом участке от произвольной точки N до точки N 1 . Расстояния этих точек до центра Земли обозначим через r и r 1 , соответственно, так что работа А 1 будет равна
A 1 = −F(r 1 − r) = F(r − r 1) .
Но какое значение силы F следует подставить в эту формулу? Ведь оно изменяется от точки к точке: в N оно равно GmM/r 2 (М − масса Земли), в точке N 1 GmM/r 1 2 .
 Очевидно, нужно взять среднее значение этой силы. Так как расстояния r и r 1 , мало отличаются друг от друга, то в качестве среднего можно взять значение силы в некоторой средней точке, например такой, что
r cp 2 = rr 1 .
Тогда получаем
A 1 = GmM(r − r 1)/(rr 1) = GmM(1/r 1 − 1/r) .
 Рассуждая таким же образом, найдем, что на участке N 1 N 2 совершается работа
A 2 = GmM(1/r 2 − 1/r 1) ,
на участке N 2 N 3 работа равна
A 3 = GmM(1/r 3 − 1/r 2) ,
а на участке NN 3 работа равна
A 1 + A 2 + A 2 = GmM(1/r 3 − 1/r) .
 Закономерность ясна: работа силы притяжения при перемещении тела от одной точки к другой определяется разностью обратных расстояний от этих точек до центра Земли. Теперь нетрудно найти и всю работу А при перемещении тела от поверхности Земли (r = R ) на бесконечно большое расстояние (r → ∞ , 1/r = 0 ):
A = GmM(0 − 1/R) = −GmM/R .
 Как видно, эта работа и в самом деле не бесконечно велика.
 Подставив полученное выражение для А в формулу
mv II 2 /2 = −GmM/R ,
найдем значение второй космической скорости:
v II = √{−2A/m} = √{2GM/R} = √{2gR} = 11,2 км/с .
 Отсюда видно, что вторая космическая скорость в √{2} раз больше первой космической скорости:
v II = √{2}v I .
 В проведенных расчетах мы не принимали во внимание то, что наше тело взаимодействует не только с Землей, но и с другими космическими объектами. И в первую очередь − с Солнцем. Получив начальную скорость, равную v II , тело сумеет преодолеть тяготение к Земле, но не станет истинно свободным, а превратится в спутник Солнца. Однако если телу у поверхности Земли сообщить так называемую третью космическую скорость v III = 16,6 км/с , то оно сумеет преодолеть и силу притяжения к Солнцу.
 Смотрите пример

    Что такое искусственные спутники Земли?

    Какое назначение они имеют?

Вычислим скорость, которую надо сообщить искусственному спутнику Земли, чтобы он двигался по круговой орбите на высоте h над Землёй.

На больших высотах воздух сильно разрежен и оказывает незначительное сопротивление движущимся в нём телам. Поэтому можно считать, что на спутник массой m действует только гравитационная сила , направленная к центру Земли (рис. 3.8).

Согласно второму закону Ньютона m цс = .

Центростремительное ускорение спутника определяется формулой где h - высота спутника над поверхностью Земли. Сила же, действующая на спутник, согласно закону всемирного тяготения определяется формулой где M - масса Земли.

Подставив найденные выражения для F и а в уравнение для второго закона Ньютона, получим

Из полученной формулы следует, что скорость спутника зависит от его расстояния от поверхности Земли: чем больше это расстояние, тем с меньшей скоростью он будет двигаться по круговой орбите. Примечательно то, что эта скорость не зависит от массы спутника. Значит, спутником Земли может стать любое тело, если ему сообщить определённую скорость. В частности, при h = 2000 км = 2 10 6 м скорость υ ≈ 6900 м/с.

Подставив в формулу (3.7) значение G и значения величин М и R для Земли, можно вычислить первую космическую скорость для спутника Земли:

υ 1 ≈ 8 км/с.

Если такую скорость сообщить телу в горизонтальном направлении у поверхности Земли, то при отсутствии атмосферы оно станет искусственным спутником Земли, обращающимся вокруг неё по круговой орбите.

Такую скорость спутникам способны сообщать только достаточно мощные космические ракеты. В настоящее время вокруг Земли обращаются тысячи искусственных спутников.

Любое тело может стать искусственным спутником другого тела (планеты), если сообщить ему необходимую скорость.

Вопросы к параграфу

    1. Что определяет первую космическую скорость?

    2. Какие силы действуют на спутник любой планеты?

    3. Можно ли сказать, что Земля - спутник Солнца?

    4. Выведите выражение для периода обращения спутника планеты.

    5 Как изменяется скорость космического корабля при входе в плотные слои атмосферы? Нет ли противоречий с формулой (3.6)?

Первой космической скоростью называется минимальная скорость, которую следует сообщить космическому снаряду для того, чтобы он вышел на околоземную орбиту.

Любой предмет, который мы бросаем горизонтально, пролетев некоторое расстояние, упадет на землю. Если бросить этот предмет сильнее, он пролетит дольше, упадет дальше, и траектория его полета будет более пологой. Если последовательно предавать предмету все большую скорость, при определенной скорости кривизна его траектории сравняется с кривизной поверхности Земли. Земля ведь шар, о чем знали еще древние греки. Что это будет означать? Это будет означать, что поверхность Земли будет как бы убегать от брошенного предмета с той же скоростью, с которой он будет падать на поверхность нашей планеты. То есть, брошенный с некоторой скоростью предмет начнет кружиться вокруг Земли на некоторой постоянной высоте. Если пренебречь сопротивлением воздуха, вращение это никогда не прекратится. Запущенный предмет станет искусственным спутником Земли. Та скорость, при которой это произойдет и называется первой космической.

Первую космическую скорость для нашей планеты легко вычислить, рассмотрев силы, которые действуют на тело, запущенное над поверхностью Земли с некоторой скоростью.

Первая сила - сила земного притяжения, прямо пропорциональная массе тела и массе нашей планеты и обратно пропорциональная квадрату расстояния между центром Земли и центром тяжести запускаемого тела. Это расстояние равно сумме земного радиуса и высоты предмета над поверхностью Земли.

Вторая сила - центростремительная. Она прямо пропорциональна квадрату скорости полета и массе тела и обратно пропорциональна расстоянию от центра тяжести вращающегося тела до центра Земли.

Если приравнять эти силы и произвести несложные преобразования, доступные школьнику 6-го класса (или когда в российской школе нынче начинают изучать алгебру?), то получится, что первая космическая скорость пропорциональна квадратному корню из частного деления массы Земли на расстояние от летящего тела до центра Земли. Подставив соответствующие данные, получаем, что у поверхности Земли первая космическая скорость составляет 7.91 километра в секунду. С увеличением высоты полета первая космическая скорость уменьшается, но не слишком сильно. Так, на высоте 500 километров над поверхностью Земли она составит 7.62 километра в секунду.

Такие же рассуждения можно повторить для любого круглого (или почти круглого) небесного тела: Луны, планет, астероидов. Чем меньше небесное тело, тем меньше для него первая космическая скорость. Так, для того, чтобы стать искусственным спутником Луны понадобится скорость только 1.68 километров в секунду, почти в пять раз меньше, чем на Земле.

Вывод спутника на орбиту вокруг Земли производится в два этапа. Первая ступень поднимает спутник на большую высоту и частично разгоняет его. Вторая ступень доводит скорость спутника до первой космической и выводит его на орбиту. Почему ракета взлетает, было написано в .

После вывода на орбиту вокруг Земли спутник может вращаться вокруг нее без помощи двигателей. Он как бы все время падает, но никак не может при этом достигнуть поверхности Земли. Именно из-за того, что спутник Земли все время как бы падает, в нем возникает состояние невесомости.

Кроме первой космической скорости существуют еще вторая, третья и четвертая космические скорости. Если космический корабль достигает второй космической скорости (около 11 км/сек), он может покинуть околоземное пространство и улететь к другим планетам.

Развив третью космическую скорость (16.65 км/сек) космический корабль покинет пределы Солнечной системы, а четвертая космическая скорость (500 - 600 км/сек) - тот предел, преодолев который космический корабль сможет совершить межгалактический перелет.

С древних времен людей интересовала проблема устройства мира. Еще в III-м веке до нашей эры греческий философ Аристарх Самосский высказал идею о том, что Земля вращается вокруг Солнца, и попытался вычислить расстояния и размеры Солнца и Земли по положению Луны. Так как доказательный аппарат Аристарха Самосского был несовершенен, большинство осталось сторонниками пифагорейской геоцентрической системы мира.
Прошло почти два тысячелетия, и идеей гелиоцентрического устройства мира увлекся польский астроном Николай Коперник. Он умер в 1543 году, и вскоре труд всей его жизни опубликовали ученики. Модель и таблицы положения небесных тел Коперника, основанные на гелиоцентрической системе, гораздо точнее отражали положение вещей.
Спустя полвека немецкий математик Иоганн Кеплер, используя скурупулезные записи датского астронома Тихо Браге о наблюдениях небесных тел, вывел законы движения планет, которые сняли неточности модели Коперника.
Завершение XVII века ознаменовалось трудами великого английского ученого Исаака Ньютона. Законы механики и всемирного тяготения Ньютона расширили и дали теоретическое обоснование формулам, выведенным из наблюдений Кеплером.
Наконец, в 1921 году Альберт Эйнштейн предложил общую теорию относительности, наиболее точно описывающую механику небесных тел в настоящее время. Ньютоновские формулы классической механики и теории гравитации до сих пор могут применяться для некоторых вычислений, не требующих большой точности, и там, где релятивистскими эффектами можно пренебречь.

Благодаря Ньютону и его предшественникам мы можем вычислить:

  • какую скорость должно иметь тело для сохранения заданной орбиты (первая космическая скорость )
  • с какой скоростью должно двигаться тело, чтобы оно преодолело притяжение планеты и стало спутником звезды (вторая космическая скорость )
  • минимальную необходимую скорость выхода за пределы планетной системы (третья космическая скорость )

Лучшие статьи по теме