Сайт про гаджеты, ПК, ОС. Понятные инструкции для всех
  • Главная
  • Планшеты
  • Математическое ожидание – это распределение вероятностей случайной величины. Математическое ожидание и дисперсия случайной величины

Математическое ожидание – это распределение вероятностей случайной величины. Математическое ожидание и дисперсия случайной величины

Случайные величины помимо законов распределения могут описываться также числовыми характеристиками .

Математическим ожиданием М (x) случайной величины называется ее среднее значение.

Математическое ожидание дискретной случайной величины вычисляется по формуле

где значения случайной величины, р i - ихвероятности.

Рассмотрим свойства математического ожидания:

1. Математическое ожидание константы равно самой константе

2. Если случайную величину умножить на некоторое число k, то и математическое ожидание умножится на это же число

М (kx) = kМ (x)

3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий

М (x 1 + x 2 + … + x n) = М (x 1) + М (x 2) +…+ М (x n)

4. М (x 1 - x 2) = М (x 1) - М (x 2)

5. Для независимых случайных величин x 1 , x 2 , … x n математическое ожидание произведения равно произведению их математических ожиданий

М (x 1 , x 2 , … x n) = М (x 1) М (x 2) … М (x n)

6. М (x - М (x)) = М (x) - М (М(x)) = М (x) - М (x) = 0

Вычислим математическое ожидание для случайной величины из Примера 11.

М (x) = = .

Пример 12. Пусть случайные величины x 1 , x 2 заданы соответственно законами распределения:

x 1 Таблица 2

x 2 Таблица 3

Вычислим М (x 1) и М (x 2)

М (x 1) = (- 0,1) 0,1 + (- 0,01) 0,2 + 0 · 0,4 + 0,01 · 0,2 + 0,1 · 0,1 = 0

М (x 2) = (- 20) 0,3 + (- 10) 0,1 + 0 · 0,2 + 10 · 0,1 + 20 · 0,3 = 0

Математические ожидания обеих случайных величин одинаковы- они равны нулю. Однако характер их распределения различный. Если значения x 1 мало отличаются от своего математического ожидания, то значения x 2 в большой степени отличаются от своего математического ожидания, и вероятности таких отклонений не малы. Эти примеры показывают, что по среднему значению нельзя определить, какие отклонения от него имеют место как в меньшую, так и в большую сторону. Так при одинаковой средней величине выпадающих в двух местностях осадков за год нельзя сказать, что эти местности одинаково благоприятны для сельскохозяйственных работ. Аналогично по показателю средней заработной платы не возможно судить об удельном весе высоко- и низкооплачиваемых работниках. Поэтому, вводится числовая характеристика – дисперсия D (x) , которая характеризует степень отклонения случайной величины от своего среднего значения:

D (x) = M (x - M (x)) 2 . (2)

Дисперсия –это математическое ожидание квадрата отклонения случайной величины от математического ожидания. Для дискретной случайной величины дисперсия вычисляется по формуле:

D (x) = = (3)

Из определения дисперсии следует, что D (x) 0.

Свойства дисперсии:

1. Дисперсия константы равна нулю

2. Если случайную величину умножить на некоторое число k , то дисперсия умножится на квадрат этого числа

D (kx) = k 2 D (x)

3. D (x) = М (x 2) – М 2 (x)

4. Для попарно независимых случайных величин x 1 , x 2 , … x n дисперсия суммы равна сумме дисперсий.

D (x 1 + x 2 + … + x n) = D (x 1) + D (x 2) +…+ D (x n)

Вычислим дисперсию для случайной величины из Примера 11.

Математическое ожидание М (x) = 1. Поэтому по формуле (3) имеем:

D (x) = (0 – 1) 2 ·1/4 + (1 – 1) 2 ·1/2 + (2 – 1) 2 ·1/4 =1·1/4 +1·1/4= 1/2

Отметим, что дисперсию вычислять проще, если воспользоваться свойством 3:

D (x) = М (x 2) – М 2 (x).

Вычислим дисперсии для случайных величин x 1 , x 2 из Примера 12 по этой формуле. Математические ожидания обеих случайных величин равны нулю.

D (x 1) = 0,01· 0,1 + 0,0001· 0,2 + 0,0001· 0,2 + 0,01· 0,1 = 0,001 + 0,00002 + 0,00002 + 0,001 = 0,00204

D (x 2) = (-20) 2 · 0,3 + (-10) 2 · 0,1 + 10 2 · 0,1 + 20 2 · 0,3 = 240 +20 = 260

Чем ближе значение дисперсии к нулю, тем меньше разброс случайной величины относительно среднего значения.

Величина называется среднеквадратическим отклонением . Модой случайной величины x дискретного типа Md называется такое значение случайной величины, которому соответствует наибольшая вероятность.

Модой случайной величины x непрерывного типа Md , называется действительное число, определяемое как точка максимума плотности распределения вероятностей f(x).

Медианой случайной величины x непрерывного типа Mn называется действительное число, удовлетворяющее уравнению

Следующим по важности свойством случайной величины вслед за математическим ожиданием является ее дисперсия, определяемая как средний квадрат отклонения от среднего:

Если обозначить через то дисперсия VX будет ожидаемым значением Это характеристика „разброса" распределения X.

В качестве простого примера вычисления дисперсии предположим, что нам только что сделали предложение, от которого мы не в силах отказаться: некто подарил нам два сертификата для участия в одной лотерее. Устроители лотереи продают каждую неделю по 100 билетов, участвующих в отдельном тираже. В тираже выбирается один их этих билетов посредством равномерного случайного процесса - каждый билет имеет равные шансы быть выбранным - и обладатель этого счастливого билета получает сто миллионов долларов. Остальные 99 владельцев лотерейных билетов не выигрывают ничего.

Мы можем использовать подарок двумя способами: купить или два билета в одной лотерее, или по одному для участия в двух разных лотереях. Какая стратегия лучше? Попытаемся провести анализ. Для этого обозначим через случайные величины, представляющие размер нашего выигрыша по первому и второму билету. Ожидаемое значение в миллионах, равно

и то же самое справедливо для Ожидаемые значения аддитивны, поэтому наш средний суммарный выигрыш составит

независимо от принятой стратегии.

Тем не менее, две стратегии выглядят различными. Выйдем за рамки ожидаемых значений и изучим полностью распределение вероятностей

Если мы купим два билета в одной лотерее, то наши шансы не выиграть ничего составят 98% и 2% - шансы на выигрыш 100 миллионов. Если же мы купим билеты на разные тиражи, то цифры будут такими: 98.01% - шанс не выиграть ничего, что несколько больше, чем ранее; 0.01% - шанс выиграть 200 миллионов, также чуть больше, чем было ранее; и шанс выиграть 100 миллионов теперь составляет 1.98%. Таким образом, во втором случае распределение величины несколько более разбросано; среднее значение, 100 миллионов долларов, несколько менее вероятно, тогда как крайние значения более вероятны.

Именно это понятие разброса случайной величины призвана отразить дисперсия. Мы измеряем разброс через квадрат отклонения случайной величины от ее математического ожидания. Таким образом, в случае 1 дисперсия составит

в случае 2 дисперсия равна

Как мы и ожидали, последняя величина несколько больше, поскольку распределение в случае 2 несколько более разбросано.

Когда мы работаем с дисперсиями, то все возводится в квадрат, так что в результате могут получиться весьма большие числа. (Множитель есть один триллион, это должно впечатлить

даже привычных к крупным ставкам игроков.) Для преобразования величин в более осмысленную исходную шкалу часто извлекают квадратный корень из дисперсии. Полученное число называется стандартным отклонением и обычно обозначается греческой буквой а:

Стандартные отклонения величины для наших двух лотерейных стратегий составят . В некотором смысле второй вариант примерно на 71247 долларов рискованнее.

Каким образом дисперсия помогает в выборе стратегии? Это не ясно. Стратегия с большей дисперсией рискованнее; но что лучше для нашего кошелька - риск или безопасная игра? Пусть у нас есть возможность купить не два билета, а все сто. Тогда мы могли бы гарантировать выигрыш в одной лотерее (и дисперсия была бы нулевой); или же можно было сыграть в сотне разных тиражей, ничего не получая с вероятностью зато имея ненулевой шанс на выигрыш вплоть до долларов. Выбор одной из этих альтернатив лежит за рамками этой книги; все, что мы можем сделать здесь,- это объяснить, как произвести подсчеты.

В действительности имеется более простой способ вычисления дисперсии, чем прямое использование определения (8.13). (Есть все основания подозревать здесь какую-то скрытую от глаз математику; иначе с чего бы дисперсия в лотерейных примерах оказалась целым кратным Имеем

поскольку - константа; следовательно,

„Дисперсия есть среднее значение квадрата минус квадрат среднего значения"

Например, в задаче про лотерею средним значением оказывается или Вычитание (квадрата среднего) дает результаты, которые мы уже получили ранее более трудным путем.

Есть, однако, еще более простая формула, применимая, когда мы вычисляем для независимых X и Y. Имеем

поскольку, как мы знаем, для независимых случайных величин Следовательно,

„Дисперсия суммы независимых случайных величин равняется сумме их дисперсий" Так, например, дисперсия суммы, которую можно выиграть на один лотерейный билет, равняется

Следовательно, дисперсия суммарного выигрыша по двум лотерейным билетам в двух различных (независимых) лотереях составит Соответствующее значение дисперсии для независимых лотерейных билетов будет

Дисперсия суммы очков, выпавших на двух кубиках, может быть получена по той же формуле, поскольку есть сумма двух независимых случайных величин. Имеем

для правильного кубика; следовательно, случае смещенного центра масс

следовательно, если у обоих кубиков центр масс смещен. Заметьте, что в последнем случае дисперсия больше, хотя принимает среднее значение 7 чаще, чем в случае правильных кубиков. Если наша цель - выбросить побольше приносящих удачу семерок, то дисперсия - не лучший показатель успеха.

Ну хорошо, мы установили, как вычислить дисперсию. Но мы пока не дали ответа на вопрос, почему надо вычислять именно дисперсию. Все так делают, но почему? Основная причина заключается в неравенстве Чебышева которое устанавливает важное свойство дисперсии:

(Это неравенство отличается от неравенств Чебышёва для сумм, встретившихся нам в гл. 2.) На качественном уровне (8.17) утверждает, что случайная величина X редко принимает значения, далекие от своего среднего если ее дисперсия VX мала. Доказательство

тельство необычайно просто. Действительно,

деление на завершает доказательство.

Если мы обозначим математическое ожидание через а стандартное отклонение - через а и заменим в (8.17) на то условие превратится в следовательно, мы получим из (8.17)

Таким образом, X будет лежать в пределах -кратного стандартного отклонения от своего среднего значения за исключением случаев, вероятность которых не превышает Случайная величина будет лежать в пределах 2а от по крайней мере для 75% испытаний; в пределах от до - по крайней мере для 99%. Это случаи неравенства Чебышёва.

Если бросить пару кубиков раз, то общая сумма очков во всех бросаниях почти всегда, при больших будет близка к Причина этого следующая: дисперсия независимых бросаний составит Дисперсия в означает стандартное отклонение всего

Поэтому из неравенства Чебышёва получаем, что сумма очков будет лежать между

по крайней мере для 99% всех бросаний правильных кубиков. Например, итог миллиона бросаний с вероятностью более 99% будет заключен между 6.976 млн и 7.024 млн.

В общем случае, пусть X - любая случайная величина на вероятностном пространстве П, имеющая конечное математическое ожидание и конечное стандартное отклонение а. Тогда можно ввести в рассмотрение вероятностное пространство Пп, элементарными событиями которого являются -последовательности где каждое , а вероятность определяется как

Если теперь определить случайные величины формулой

то величина

будет суммой независимых случайных величин, которая соответствует процессу суммирования независимых реализаций величины X на П. Математическое ожидание будет равно а стандартное отклонение - ; следовательно, среднее значение реализаций,

будет лежать в пределах от до по крайней мере в 99% временного периода. Иными словами, если выбрать достаточно большое то среднее арифметическое независимых испытаний будет почти всегда очень близко к ожидаемому значению (В учебниках теории вероятностей доказывается еще более сильная теорема, называемая усиленным законом больших чисел; но нам достаточно и простого следствия неравенства Чебышёва, которое мы только что вывели.)

Иногда нам не известны характеристики вероятностного пространства, но требуется оценить математическое ожидание случайной величины X при помощи повторных наблюдений ее значения. (Например, нам могла бы понадобиться средняя полуденная температура января в Сан-Франциско; или же мы хотим узнать ожидаемую продолжительность жизни, на которой должны основывать свои расчеты страховые агенты.) Если в нашем распоряжении имеются независимые эмпирические наблюдения то мы можем предположить, что истинное математическое ожидание приблизительно равно

Можно оценить и дисперсию, используя формулу

Глядя на эту формулу, можно подумать, что в ней - типографская ошибка; казалось бы, там должно стоять как в (8.19), поскольку истинное значение дисперсии определяется в (8.15) через ожидаемые значения. Однако замена здесь на позволяет получить лучшую оценку, поскольку из определения (8.20) вытекает, что

Вот доказательство:

(В этой выкладке мы опираемся на независимость наблюдений, когда заменяем на )

На практике для оценки результатов эксперимента со случайной величиной X обычно вычисляют эмпирическое среднее и эмпирическое стандартное отклонение после чего записывают ответ в виде Вот, например, результаты бросаний пары кубиков, предположительно правильных.

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }

Лучшие статьи по теме